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‘ *How do we diagnose mix in MagLIFF experiments?

*Where does mix come from and how does 1t impact performance?

*How can we improve our understanding of instability driven mix?

i



| MagLIF uses preheat, magnetic insulation and adiabatic
4 | compression to achieve high pressure
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*Laser heating allows low implosion velocity (<100 km/s)

Achieved >10'3 DD neutrons
E,n > 1kJ, Py > 1 Gbar

*Preheat energy is contained via magnetic insulation

- Compression : :
Thum =3 keV ‘vp *Flux compression allows o confinement with low fuel pR
Lend *Long dwell time makes us sensitive to early time mix

Slutz et al., Phys. Plasmas 17, 056303 (2010)



We have developed a forward model that allows direct, |
5 | quantitative comparison of the data with synthetic diagnostics

X-ray Emission:
‘Nslices B A e_pREKJV P2 gFF Z f —hV/T
| €y = Af_y Thigs (1 2 z]z T5/2
3, = J_z ZQ_|_ Af b Z RyZQ/T
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Neutron Emission:
. AT(r) P2 v
| EE_ HSTb flf2<0- > I (E)

14612 (14(2))212°°
*I(B) = ¢ (VEVEP

fmn\ |
r
. Basic Model Parameters  Global/hyper Parametets
Assumptions:
* Each slice isa static, isobaric hot spot surrounded by a liner {TI} — {Te} Zmix
* Ideal gas EOS: Pyg = (1 + <Z.>)nikBT {pRg} Thurn k
* All elements bave same burn duration {Pys) hHS
* Electron and ion temperatures are equal T
* X-ray emission is dominated by continuum (BF & FF) {f miX} €Xp
{Rus}

*Ballabio et al., NUCLEAR FUSION, Vol. 38, No. 11 (1998)



Bayesian inference allows us to integrate multiple sources of
6 I data using physics and diagnostic models to infer parameters —

Experimental Data

Bayes’ Theorem Likelithood
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Mix is known to occur, but the total amount and relative
contributions from potential sources is poorly understood

Co coatings used to analyze window and cushion mix

o Z3083 —with DPP
1 "
Window T3 Ez Main Contributors to mix
Thick: 3.4 ym u 4 & |
Thin: 1.7 ym é 5 @ ;' E *Preheat
: E " * Window
1 Mn He-p .
§ 8 § | * Cushion
9 Co He-a + ;
1 satellites .
10 *Implosion
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Harvey-Thompson et al., Phys. Plasmas (accepted)



o | It is observed that low mix is strongly correlated with high
pressure and the Al and Be cushion shots are clustered

X, ® Al *This analysis determines the stagnation
o - :H: ® Be pressure and an effective mix fraction
() . . .
= ‘ ‘ (assuming mix is 100% Be)
X
= *The Be cushion shots have, on average
2 10- * 3x less effective mix fraction
'*é ? O » ~40% higher pressure
LUl e |

! *The average hotspot energy is ~50% higher
0.4 0.6 0.8 in the Be cushion experiments

Pressure [Gbar]

3 3
(Efs) = <§PHSVHS> ~76k] (ER) = <§PHSVHS> ~ 11.4 kJ
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It is observed that the image volumes and x-ray burn histories
are nearly the same across both groups of experiments

Al Cushion
22985

z2707

-0.3 0 0.3

-0.3 0 0.3 -0.3 0 0.3
Radial Position [mm]

Be Cushion

-0.3 0 0.3

*The morphology and evolution of stagnation
appear to be very similar between the high mix
and low mix experiments

*Volumes are the same to +/- 20%

°T, .o 18 the same to +/- 10% (measured with x-
rays)

*Laser pulses and LEH windows are nominally
identical

*Radiation losses are the only term significantly
modified by mix



Exploiting these similarities we can break the mix contribution |

" ¥ into three sources and constrain each |

Nw ~ (500 pm)? % 1.77 pm * njon ~ 4 x 10'° ‘

Mix total: Window + Cushion + Liner P 18
Negel = — ~ 8 X 10

B - B . kT
feﬂ?Z%e — fWZgoly fCeZ%e + fDZ%e Be Cushion

~ fw =0.5+0.2%
Al 3 3 Al 3 3 .
[ 286 = fWZ3s, H fE'Z3) H | foZ, | A Cushion

°f and fj are assumed to be the same in the two cases
Equal cushion scrape-off mass

Liner 2.6 % 2.6 % C 2

*2 equations, four unknowns 1 |
Al _ — rBe
C — 3 i
. |AL Cushion |
Window 0.5 % 0.5 % Equal cushion scrape-off volume I
Cushion 0.57 % 1.5% Al _ 1 Be ‘



Looking at a broader MagLIF dataset we can see some
12 I emerging trends
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Lets add three of our highest yield shots to the mix
The major advancements here are improved laser heating protocols, higher B-field and higher current drive

The use of co-injection (as opposed to just beam smoothing or no conditioning) reduces the effective mix
present at stagnation

It appears that higher B-field increases the stagnation temperature somewhat (more analysis needed)
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We have developed a new platform to help benchmark
14 I modeling of instability driven mix in a converging geometry

The platform is comprised of
> A Be liner
> A liquid D, fill

° An on-axis Be rod with
machined perturbation

Z’s current tlows through the
liner, causing it to implode

A strong shock is driven in the
D,

The shock impacts the rod,
driving the RM process

The instability growth is
diagnosed using x-ray BL.

PDV Probe

Return Can

(6]
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w A

N

—
" |

Magnetic Drive

X X XX

Liner (Be) 0.64 mm

4.48 mm
A=300 um

—

g ]
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3100

1 Transmitted
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We have developed a new platform to help benchmark =F
15 I modeling of instability driven mix in a converging geometry -

The platform is comprised of

o A Be liner
> A liquid D, fill

° An on-axis Be rod with
machined perturbation

Z’s current tlows through the
liner, causing it to implode

A strong shock is driven in the
D,

The shock impacts the rod,
driving the RM process

The instability growth is
diagnosed using x-ray BL.

PDV Probe

Return Can

On-axis rod

Magnetic Drive

X X XX

Liner (Be)

Rod Interface

2900 3000 3100
Time [ns]

0.2 1 Transmitted
Shock

3070 3080 3090 3100 3110
Time [ns]
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Axial Position [mm)]

Abel inversion allows the density of the rod to be inferred
without obstruction from the liner

(@)
- Radiographs are monochromatic at 1.85,
05 6.15, or 7.2 keV (we use 7.2 keV here)
. full radiographic FOV is 4 mm x 12 mm
05 The spatial resolution is 12 um
0 Contrast and SNR allow us to invert the
] data directly to obtain density

-2 -1 0 1 2 -0.5 0 0.5

Radial Position [mm] Radial Position [mm]

(a) 23023 t1 (b) 23109 t2 (c) 23244 t1 (d) 23023 2 (e) 23244 12

Axial Position [mm]

Abel invert to
obtain p(r,z)

-0.5 0 0.5 -0.5 0 0.5
Radial Position [mm]




We can track the contour with high fidelity and measure the , I
17 I growth and mean interface position

0.6
0.58
"2 0.56 X I
;g. ¢ ! :
v (.54 i ]
o — L -
"g = 6 s ]
~ 0.52 = [ d
= 5SF ;
ﬁ o -
0.5 = g i
o Bubble Volume — 4 F r
: ' ' ' = X
1 05 0 0.5 I S 5 f B oy
Radius [mm] Height [mm] o i e
L L
O 2}
The data agrees well with cylindrical theory from ®
Lombardini et al. 1 ]

Displacement [ kzé r]

With current diagnostics it is not really possible to
distinguish between cylindrical and planar

| Planar
@ Ex
Must include the shock proximity and compression effects 0 5 10 15
2D post-shot simulations in progress for detailed comparison M

M. Lombardini et al., Physics of Fluids 21, 114103 (2009)



The high spatial resolution affords the possibility of performing
" ¥ detailed comparisons in the nonlinear growth phase

n=1 2 3 45
| J——

Growth [ h(t)/ho ]
—_ \e] (O8] SN W (@) ~

0 3 10 15
Displacement [ kzé r]

*With two frames on a single shot we can watch

growth of modes n=1-5 10 100

'E(/e see a distinct lack of energy around the 3rd Wavenumber [mm-l]
armonic

*This data is suitable for detailed comparisons with
interfaces from 2D simulations




Scoping experiments with a multimode perturbation show
9 ¥ tantalizing results

z3111: t=31008 ns

Using a complex 10-mode 1nitial perturbation we are able to quickly see highly nonlinear behavior
> Mushrooming

° Mode competition

° Bending of large amplitude spikes

With improved liner stability, we plan to push this into the reshock and mixing regime

i



Conclusions and future work

*We observe mix from multiple sources in MaglL.IF
implosions at stagnation that CAN significantly
impact performance

*We have developed strategies to mitigate mix from
preheat (A. Harvey-Thompson) and the cushions

*We can see trends in improved performance and
stagnation parameters when increasing laser energy
coupling, drive current, and initial B-field

*Deceleration phase mix is still poorly understood
p p y

*We have developed a platform that allows clean
diagnosis of instability growth and resulting mix in
a converging geometry to help improve our
understanding of this critical phase

Tomorrow you can hear about our platform
developed to investigate mix driven by
kinetic processes
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