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PROMOTES

High Performance Reduction/Oxidation Metal Oxides for
Thermochemical Energy Storage
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Metal Oxide TCES

Metal oxides are ideal materials for storage in high temperature cycles
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MO, 5 + 8/2 O, = heat + MO,

) Advantages of Metal Oxides (MO):

*Open or closed configurations

* Air can act as both the reactant and heat transfer fluid

* Environmentally benign
* No catalyst necessary

* No compression required for storage
* Amenable to multiple scales and temperature ranges




Complex Oxides

e

* Leverage both sensible heat and heat of reaction
* High energy density, extended temperature range, compatible

Metal Oxides —  with high efficiency power cycles
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e State-of-the-art is binary oxides - limited kinetics & tunability,
guestionable longevity, redox activity tied to phase change
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e Exhibit both electronic and ionic conductivity

Mixed lonic-Electronic _J ¢ lonic conductivity facilitates oxygen transport--

Conductors

Perovskite
Oxides
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improved kinetics and reaction extent
* Electronic conductivity facilitates redox activity
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* General formula ABO, 5 (6 = oxygen nonstoichiometry)

 Amenable to doping --tunability of redox extent and
temperature

* Oxygen nonstoichiometry enables redox activity without

structure decomposition
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Materials Screening Effort

) Build upon known redox-active perovskites, e.g., doped
La,Sr; MnO, 5 (“LSM”)
) Tune properties via A- and B-site cation substitution
*A=K, Ba, La Sr; B=Fe, Co, Mn
1 X-ray diffraction (XRD) to determine crystal structure and identify impurities

- Initial non-equilibrium thermogravimetric analysis (TGA) used to determine
potential redox activity and reduction onset temperature
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Doped LaCoO3

La,Sr; ,Co,Mn,, O; 5 (LSCM) and La,Sr, ,Co, Fe, , (LSCF)

) Known redox-active perovskite materials

) Large solid solubility range

) Crystallize in several perovskite-related space groups (very slight distortions)

) In general: more symmetric space groups show higher redox capacities
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A-site (La) Substitution
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Tetragonal ] Tetragonal and cubic structures are most redox active
Cubic ) Lower [La] results in more symmetric space groups.
Rhombohedral [} High [La] produces less symmetric space groups.
Orthorhombic [ Redox activity decreases with increasing lattice distortion

1 In both families redox seems to peak at [La] = 0.3 (cubic)




B-site (Co) Substitution

) Cobalt content has a weak correlation to redox activity
* Increased cobalt content generally increases Ad
* Crystal structure is not a strong function of Co content
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‘ High-Resolution Equilibrium TGA

) Used to estimate thermodynamic parameters

) Isothermal holds at 600, 800, 950, 1100, and 1250 °C; pO2 varied at each
temperature and held until equilibrium

) Thermodynamic parameters extracted by van’t Hoff approach:
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) Enthalpy determined by slope, entropy by intercept for each value of &
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‘ LSXM Enthalpy

J Partial molar: describes energy to remove a mole of O, at a specific §

) Enthalpies must be integrated over & to describe continuous reaction by
series of discrete reactions
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LSCM1991 432 0.434 216
LSCM3791 343 0.460 242
LSCM3782 359 0.412 236
LSCF2882 357 0.486 212
LSCF3791 352 0.461 223
11 LSCF3773 348 0.455 223




Increasing Reaction Enthalpy

s AGy = AH g = TAS, 4
J AG,.4 = 0is the onset of reduction (equilibrium)

* Assuming entropy term is similar between materials (i.e., constant), a
change in reduction enthalpy necessitates a change in reduction

temperature
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Doped CaMn, B O; 5 Perovskites

1 Cais a +2 element, forcing the B-site, e.g. Mn, to adopt a
higher oxidation state (+4)

) Ca as the main element in the A-site lowers the molecular
weight dramatically (Ca = 40.078 g/mol)

) Ca more abundant and less expensive than Sr or La

1 Calcium-based perovskites reduce at high temperatures,

*Higher reduction temperatures indicative of stronger M-O
bonds, resulting in increased partial molar reduction
enthalpies

J T4 0f CaMnO3 = 875 °C (vs. 432 °C for LSCM1991)
*However, decomposes under reducing conditions
*Doping CMO can help stabilize the structure
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Stability Under Reducing Conditions

] CCM28 and CM decompose under 1000 °C Ar anneal
] CTM28 and CAM28 convert from orthorhombic (blue) to tetragonal (red)
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Indicators of phase transition from Orthorhombic to Cubic-

like phase at High Temperature (1000 °C to 1200 °C)

‘ CAM28 In-situ XRD

Orthorhombic Phase

1
=
2
il

L
i
il
il

40

30

o

w
o
[p}

Two-Theta (deg)

HT XRD results for: CAM28 low_pQO2



‘Total Storage Potential

AH,,, = AH,,+ C AT

* Latent heat assumes pO, swing of 0.001 to 0.9
* Sensible heat assumes Cp = 15R, T, = 200 ¢C

LSCM379
Temperature Sensible Latent Total
(°C) (kJ/kg) (kJ/kg) (kJ/kg)
1100 536 192 728
1200 595 225 820
1350* 684 289* 973
CTM2
Temperature Sensible 8 Latent Total
(°C) (kJ/kg) (kJ/kg) (kJ/kg)
1100 793 290 1083
1200 881 362 1243
1350* 1013 481* 1494
CAM28
Temperature Sensible Latent Total
(°C) (kJ/kg) (kJ/kg) (kJ/kg)
1100 826 293 1119
1200 918 351 1269
1350* 1056 450* 1506

* Values at 1350 C are extrapolated from & vs T data
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‘A-Site Doping in CaMnO3

CYM28

Analogue of CAM28

Large increase of T, - 1022 °Ciin air

Not single phase

Poor redox capacity

Y seems to substitute on the A-site (for Ca) rather than on the B-site

* Increase in Tred observed in other A-site doped CaMnO,; compositions

* Can A-site doping result in an increased T4 while maintaining the higher
redox properties of the parent compound?
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Ca,, Y,MnO; (0<x<0.5)

Weight (%)

100.5 — 1400
-1200
99.54 I
- 1000
-800
98.54
-600
1400 - ¢
1200 - o P ¢ [
11 _1000
g0 ® -400
07535 |
= 400 --- CYM910 [
™ 200 e CYM820 -200
] 0 i i , X --- CYM730 -
0 1 2 3 4
[Y]in CYM
96.5 T T T T T T T T T T T 0
150 200 250 300

d T.4increases with increasing [Y]

1 Corresponding 6 decreases with increasing [Y]
J Balance between T 4 and reduction extent (6)
At what point does T,_4 become too high?

Temperature (°C)




In-situ XRD CYM910

] Orthorhombic = Cubic-like transition also observed, but at higher temperature

than CAM28

] Consistent with higher-temperature exotherm and T,
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Enthalpy of Y-doped CaMnO, ;

Reduction Enthalpy (kJ/kg-ABO3)
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While T, eventually becomes impractical, insights gleaned from these
trends can aid in design of future materials with tunable enthalpies and
reduction temperatures
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Conclusions

Initial LSCX investigation provided insight on structural/thermal properties of
TCES perovskites

* Promising AHtotal values achieved, but reduction extent is adequate, but
reaction enthalpy falls short of 1500 kJ/kg goal

Reduction onset temperature (Tred) was identified as a key indicator of AH_,,
CaMnO; displays high Tred but decomposes under reducing conditions

B-site doping with non-labile cations (Al, Ti) mitigates decomposition while
maintaining redox properties

* AHtotal approaching1500 kJ/kg

* Increase in reaction enthalpy of over 50% compared to LSXM

* To our knowledge these materials outperform any reported oxide TCES
material operating above 1000 °C

A-site doping with Y further increases T, 4

* Sacrifice redox extent

* What is the ideal balance between T, 4 and 67

Judicious choice of A- and B- sited dopants in CaMnO, can result in effective
TCES materials across a wide range of operating parameters
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‘ CAM28 Cyclic Behavior

Extended thermal redox cycling in TGA
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‘ Multi-cycle TGA CYM910
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Reduction at 1050 °C/ 10% air:Ar; Oxidation at 400 °C/ air
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Reproducibility over 100 cycles

Symmetry transition does not seem to affect kinetics

Post-cycle XRD shows no structural change




