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1 PROMOTES
High Performance Reduction/Oxidation Metal Oxides for

Thermochemical Energy Storage

Solar Receiver
Reduction
Reactor (SR3)

=> Particles

Air or Oxygen

Air Brayton
Power Cycle

1. Materials Enabled
Innovation

(AHtotal 1500 kJ/kg)

2. Solar Receiver
Reduction Reactor

3. Particle Storage at
T > 1000 °C

4. Pressurized oxidation
reactor Air acts as
reactant and heat transfer
fluid. Open cycle — no
gas storage.

5. High Temp/High
Efficiency Air Brayton
Power Cycle.
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1 Thermal Storage in CSP

Sensible

(AH = cpAT

Molten salts
Falling particle

Metal Hydrides

2LIBH4-MgH2 composites

Mg2FeH6

Thermal Storage

Thermochemical

(AEltot = AHrxn + cpAT)

Oxides

Binary Metal Oxides

Co304
Mn203

Latent

AH = AHtransition)
Phase change materials

Al-Si materials

Conformational molecules

Decomposition

Doped perovskites, AB03_6
heat + MO. F4 MO._d + d/2 02



1 Metal Oxide TCES
Metal oxides are ideal materials for storage in high temperature cycles

heat + MO. 4 MO._6 + 6/2 02

02 air

heat

MO._5 + 6/2 02 4 heat + MO.

Advantages of Metal Oxides (MO):
Open or closed configurations

Air can act as both the reactant and heat transfer fluid
Environmentally benign

No catalyst necessary
No compression required for storage

Amenable to multiple scales and temperature ranges
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1 Complex Oxides

Metal Oxides

t

•

• Leverage both sensible heat and heat of reaction
• High energy density, extended temperature range, compatible

with high efficiency power cycles
State-of-the-art is binary oxides - limited kinetics & tunability,
questionable longevity, redox activity tied to phase change

Mixed lonic-Electronic

Conductors

Perovskite

Oxides

f

•

• Exhibit both electronic and ionic conductivity
• Ionic conductivity facilitates oxygen transport--

improved kinetics and reaction extent
Electronic conductivity facilitates redox activity

I

•

• General formula AB03_6 (6 = oxygen nonstoichiometry)
• Amenable to doping --tunability of redox extent and

temperature
Oxygen nonstoichiometry enables redox activity without
structure decomposition
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1 Materials Screening Effort
Build upon known redox-active perovskites, e.g., doped

LaxSr1_xMn03_6 ("LSM")

Tune properties via A- and B-site cation substitution

A = K, Ba, La Sr; B = Fe, Co, Mn

X-ray diffraction (XRD) to determine crystal structure and identify impurities

n Initial non-equilibrium thermogravimetric analysis (TGA) used to determine
potential redox activity and reduction onset temperature

Mass change measured as a function of temperature and p02
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Doped LaCo03

La„Sr1_,(CoyMn1A/03-05 (LSCM) and La„Sr1_,(CoyFe1_y (LSCF)

CI Known redox-active perovskite materials

CI Large solid solubility range

CI Crystallize in several perovskite-related space groups (very slight distortions)

C In general: more symmetric space groups show higher redox capacities

LSCM
LSCM8237 - Rhombohedral

LSCM1 )91 Tetragonal

LcC 3782 - Cubic

__I 

LSCF

LSCF9128 - Rhombohedral

.1.

S 3773 - Cubic

20 30 40 50 60 70 20 30 40 50 60 70

2q (degrees) 2q (degrees)



1 A-site (La) Substitution
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Tetragonal

Cubic

Rhombohedral

Orthorhombic

Tetragonal and cubic structures are most redox active

CI Lower [La] results in more symmetric space groups.

O High [La] produces less symmetric space groups.

O Redox activity decreases with increasing lattice distortion

O In both families redox seems to peak at [La] = 0.3 (cubic)
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1 B-site (Co) Substitution
Cobalt content has a weak correlation to redox activity

Increased cobalt content generally increases Ad

Crystal structure is not a strong function of Co content
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1 High-Resolution Equilibrium TGA
Used to estimate thermodynamic parameters

Isothermal holds at 600, 800, 950, 1100, and 1250 °C; p02 varied at each
temperature and held until equilibrium

Thermodynamic parameters extracted by van't Hoff approach:

—AGrxn 1 —Afirxn AS„n
ln(p02) = 2 2

RT T R

Enthalpy determined by slope, entropy by intercept for each value of 5
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1 LSXM Enthalpy
CI Partial molar: describes energy to remove a mole of 02 at a specific 5

Enthalpies must be integrated over 5 to describe continuous reaction by
series of discrete reactions
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Material Reduction onset (°C) Maximumi5 Enthalpy at 6 max (kJ/kg)

LSCM1991 432 0.434 216

LSCM3791 343 0.460 242

LSCM3782 359 0.412 236

LSCF2882 357 0.486 212

LSCF3791 352 0.461 223

1 LSCF3773 348 0.455 223



1 Increasing Reaction Enthalpy
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AGred = 0 is the onset of reduction (equilibrium)

Assuming entropy term is similar between materials (i.e., constant), a
change in reduction enthalpy necessitates a change in reduction
temperature
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Ideal materials show a favorable

balance of increased reduction onset

temperature without large decrease

in reduction capacity. New

compositions focus on materials in

this window.

In the LSCX system, materials with

high reduction temperatures had low

redox capacity (6 < 0.25).
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I Doped CaMn LyBy03_6 Perovskites

❑ Ca is a +2 element, forcing the B-site, e.g. Mn, to adopt a
higher oxidation state (+4)

Ca as the main element in the A-site lowers the molecular
weight dramatically (Ca = 40.078 g/mol)

❑ Ca more abundant and less expensive than Sr or La

_ Calcium-based perovskites reduce at high temperatures,

Higher reduction temperatures indicative of stronger M-O
bonds, resulting in increased partial molar reduction
enthalpies

Tred of CaMn03 = 875 °C (vs. 432 °C for LSCM1991)

However, decomposes under reducing conditions

Doping CMO can help stabilize the structure



1 Stability Under Reducing Conditions ,1
r CCM28 and CM decompose under 1000 °C Ar anneal

0 CTM28 and CAM28 convert from orthorhombic (blue) to tetragonal (red)
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1 CAM28 In-situ XRD

Orthorhombic Phase

20 30

Indicators of phase transition from Orthorhombic to Cubic-

like phase at High Temperature (1000 °C to 1200 °C )

40 50
Two-Theta (deg)

HT XRD results for: CAM28 low_p02
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I Total Storage Potential
AFItot = AHrxn+ CAT

Latent heat assumes p02 swing of 0.001 to 0.9

Sensible heat assumes Cp = 15R, = 200 2 C
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1 A-Site Doping in CaMn03
CYM28

CI Analogue of CAM28
CI Large increase of Tred - 1022 °C in air
CI Not single phase
CI Poor redox capacity
❑ Y seems to substitute on the A-site (for Ca) rather than on the B-site

Increase in Tred observed in other A-site doped CaMn03 compositions
Can A-site doping result in an increased Tred while maintaining the higher

redox properties of the parent compound?
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1 Ca i _xY.Mn03 (0<x<0.5)
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1 In-situ XRD CYM9 10
L Orthorhombic 4 Cubic-like transition also observed, but at higher temperature

than CAM28

CI Consistent with higher-temperature exotherm and Tred

Orthorhombic Phase Indicators of phase transition from
Orthorhombic to Cubic only at highest
temp 1100 °C

40 50
Two-Theta (deg)

In-situ X-ray diffraction of CYM910 under p02 = 500 ppm



1 Enthalpy ofY-doped CaMn03_6
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CI Y-doping improves enthalpy
over CAM28

CI CYM910 AH — 400 kJ/kg

CI Potential of higher enthalpy
with increasing [Y] if effective 6
can be increased

CI Tradeoffs between higher
enthalpy and costs of [Y] must
be determined

While Tred eventually becomes impractical, insights gleaned from these
trends can aid in design of future materials with tunable enthalpies and

reduction temperatures
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1 Conclusions
CI Initial LSCX investigation provided insight on structural/thermal properties of

TCES perovskites

Promising AHtotal values achieved, but reduction extent is adequate, but
reaction enthalpy falls short of 1500 kJ/kg goal

Reduction onset temperature (Tred) was identified as a key indicator of AHrxn

CaMn03 displays high Tred but decomposes under reducing conditions

B-site doping with non-labile cations (Al, Ti) mitigates decomposition while
maintaining redox properties

AHtotal approaching1500 kJ/kg

Increase in reaction enthalpy of over 50% compared to LSXM

To our knowledge these materials outperform any reported oxide TCES
material operating above 1000 °C

CI A-site doping with Y further increases Tred
Sacrifice redox extent

What is the ideal balance between Tred and 6?

Judicious choice of A- and B- sited dopants in CaMn03 can result in effective
TCES materials across a wide range of operating parameters
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• Reduction at 1050 °C/ 10% air:Ar; Oxidation at 400 °C/ air
• Reproducibility over 100 cycles
• Symmetry transition does not seem to affect kinetics
• Post-cycle XRD shows no structural change


