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21 Why study aluminized propellant burns?

Safety: Abnormal Thermal Environments

Propellant/launch safety

Heat transfer (what T's are important?)

Challenging Research Environment

High temperatures

Bright emission

o Complex chemistry

Multiphase plume

Encourages the use of laser diagnostics:

Org. 1512 is a great place to start!



3 1 Previous work in our group:

Nitrogen/Oxygen pure-rotational CARS

Correlations of rotational temperature and 02/N2 concentration
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41 Next step: improved thermometry

Switch to vibrational CARS

' Improved temperature sensitivity at high temperatures

N2 S-branch (Ay = 0, AJ = +2) H2 Q-branch (Ay = +1, AJ = 0)
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Switch from inert gas to fuel detection

' Shouldn't be plagued by spatial averaging of cold, surrounding gas

Ensuring measurements close to the burning surface
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5  Experimental Setup
... but where is the H2 from?
• Ammonium perchlorate oxidizer (AP, 70%)
• NH4C104, decomposes to form ammonia and oxidizer species

Monopropellant flame

• Hydroxyl terminated polybutadiene binder (HTPB, 10%)
• C4H6 bounded by OH, decomposes into hydrocarbon species and H2

• Decomposed hydrocarbons react with monopropellant products

Primary Diffusion Flame

• Aluminum (20%)
• Melts at —933 K, forms agglomerates on the burning surface

3-beam vibrational hydrogen CARS

Light Conversio\
TOPAS OPA

Pomp = 150 uJ
Stokes = 80 al
Robe = 15 id

Iris 2

Spectra-Physics
Spitfire fs amplifier

Nreninail Mulching

Collection Lens

Pump
•

•

Probe

PartlpulaEeTall

tli ktmlintnetPartibl

Measurement Locations

X

Decomposed fuel spades

Keno Cile. etc-,)

(1) Monapropollant Flame

In Primary Difro sie n Fiarrte

S/N Sensitivity in a Hencken Burner:

2600 -

2400

p, 2200 -
ors

0 2000 -
H

1800 -

• •

/ •

• Single shot mean
• 100 shot avg
—Theoretical
- - -5% bounds

0 8 1 1.2 1.4 1.6 1.8
Equivalence Ratio (0)



61 Timeline of the burn
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7 Spectral Fitting

1
0.5

Generate synthetic libraries of the resonant response
Assume an impulsive preparation of the Raman coherence

An etalon probe is very forgiving
Can ignore collisional and Doppler dephasing!

Fit bandwidth-corrected experimental spectra via interpolation
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81 Results

3 Burns total
Mean values within 30 K

o Temperature rise in the first 200 ms

o Otherwise constant temperature
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91 Comparison to previous work
Inert gas CARS, fuel CARS, and particle pyrometry
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Diagnostic Development for
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Ti:Sapphire
Regenerative Amplifier
7 mJ, 1 kHz, 40 fs

2XNd:YAG
Regenerative Amplifier
50 mJ, 20 Hz, 60 ps

Hypersonic Wind Tunnel (HWT)

11 i Benchtop testing HWT

Significant Diagnostic Challenges
Low density, high velocity environment with limited optical access

Off-Body Temperature and Pressure Measurements

Dual-probe hybrid fs/ps CARS instrument
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12 Temperature-Pressure CARS
Dual-probe technique
o Early, "collision-free" channel —> temperature measurement

o Late, "collisionally-dephased" channel —> pressure measurement
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13 Temperature-Pressure CARS
Dual-probe technique
o Early, "collision-free" channel —> temperature measurement

o Late, "collisionally-dephased" channel —> pressure measurement
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14 Temperature-Pressure CARS
Dual-probe technique
o Early, "collision-free" channel —> temperature measurement

o Late, "collisionally-dephased" channel —> pressure measurement
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15 Temperature-Pressure CARS
Dual-probe technique

Early, "collision-free" channel —> temperature measurement
° Late, "collisionally-dephased" channel —> pressure measurement
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16 Temperature-Pressure CARS
Collisional Model must be correct for an accurate P measurement
0 Examine "isolated" rotational lines of N2 and 02

• Singlet ground state of N2 = 1Eg+ (electron spin S = 0)
• Triplet ground state of 02 = 3Eg- (electron spin S = 1)
Total angular momentum quantum number, J, is related to the rotational angular momentum,
N, by = (. . .,N-S, N, N+S,. . .), and pure rotational Raman is AN = +2, thus

• For N2, J = N 1 transition for each "J" level

• For 02, J = (N-1, N, N+1) 6 transitions for each "N" level
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1,1 Temperature-Pressure CARS
Relative decay of the Raman lines
gives us the pressure

Relative decays of 02 and N2 as a
function of position on the chip
(simultaneously a function of T and P):
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181 Temperature-Pressure CARS
Comparison of our collisional model to real data:

—Experiment - - -Theoretical —Residual 
10 -

1 -

0.8 -

-0.2 -

-0.4 . I . • •

T = 80 K

P = 0.06 atrn

T = p S

• • • I • • •

8 -

2 -

0 • • • • • • •

40 60 80 100 120 0 500 1000
Raman Shift (cm-1) Delay (ps)



19 1 CC-DGV

Cross-Correlation Doppler Global Velocimetry. Main Idea:

More robust version of traditional DGV
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20. CC-DGV

Our attempt at scanning at 10 Hz:
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21. CC-DGV

Our attempt at scanning at 10 Hz:
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221 CC-DGV

View the correlations for different points in the jet:
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23 1 CC-DGV

Now average some pixels to improve the S/N:
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