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Sandia National Laboratories

• Sandia National Laboratories (SNL) is a multi-faceted national
security laboratory responsible for developing technologies to
ensure global peace

• SNL is a federally funded research and development center
managed by National Technology and Engineering Solutions of
Sandia, LLC for the Department of Energy

• SNL's principal sites are in Albuquerque, NM and Livermore,
CA, but we also have activities at
• Kuai Test Facility — Kuai, HI
• Waste Isolation Pilot Plant — Carlsbad, NM
• Weapons Evaluation Test Laboratory at the Pantex Plant — Amarillo, TX
• Tonopah Test Range — Tonopah, NV

• Key Mission Areas
• Nuclear Deterrence
• Defense Nuclear Nonproliferation and Global Security
• National Security Programs
• Energy and Homeland Security
• Advanced Science and Technology

Livermore, California I
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SNL National Security Mission Areas

Defense Nuclear
Nonproliferation

National Security
Programs

Energy & Homeland
Security

Advanced Science &
Technology
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4 Nuclear Proliferation

• Nuclear proliferation is the pathway that leads from peaceful use of
nuclear power to weaponization of nuclear material and the
development of a deliverable nuclear weapon
• Horizontal proliferation is the spread of nuclear capabilities to new state or

non-state actors

• Vertical proliferation involves existing nuclear weapons states increasing their
nuclear capabilities

• Special nuclear material (SNM) is
required to make a nuclear weapon

• SNM includes
• Plutonium

• Uranium enriched in 233U or 235U
Refined uranium ore, known as "yellowcake"

Photo credit iaea.org

Titan 11 Missile
Photo credit: titanmisslemuseum.org



5 1 Detection of SNM

• What does it look like?
• Many different forms (e.g. metals, oxides) and colors
• Could be concealed (by itself or in a weapon)

• •SNA4 emits ionizing radiation
• Sensitive and specific signature
• Only neutral particles useful in most cases

• Gammas

(n) (Z, A)

200 MeV !
o
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The nuclear fission process

• Emitted as decay lines and fission distributions

• Interact preferentially with high-Z materials (e.g. lead)

• Energy spectra can be used to determine isotopic content of SNM

• Neutrons
Paper Thin aluminum plate Lead plate Water and paraffin

• Emitted through fission (spontaneous, self-induced, and externally induced) Alpha ray

• Certain compositions, such as oxides, will also emit neutrons from (a,n)
reactions

"Ah

Beta ray
• Interact preferentially with low-Z materials (e.g. hydrogenous materials)

• Fission energy neutrons are a key signature of SNM
Gamma ray

• Correlated particle analysis can be used to determine SNM properties (e.g.
fission rate, multiplication, (a,n) component)

Neutron

to improve the ability to detect, localize, and• Systems
characterize SNYI are paramount in the non-proliferation
and nuclear security mission space

www.remnet.jp

Radiation penetration through materials



Radiation and Nuclear Detection Systems
6 Department Overview

• Specialize in designing detection systems for specific applications,
radiation signatures, environments, and user requirements

• Performs R&D of ionizing radiation and rare signature detection systems
to address broad nuclear security and non-proliferation needs
• Nuclear proliferation detection
• International safeguards
• Nuclear arms control treaty verification
• Radiological emergency response
• Counter terrorism

• Areas of significant experience and expertise include
• Fission-energy neutron detection
• Standoff detection and localization of radiological materials
• Antineutrino and coherent neutrino scattering detection
• Rare event and weak source detection techniques
• High-resolution imaging
• Particle identification and discrimination
• Active interrogation and neutron generators

Cargo screening

Emergency response

Arms control treaty
verification

Safeguard
s



Radiation Detector Development at SNL

• Neutron scatter cameras
• Generate low-resolution images

• Maintain energy information

NSC
• 2 planes of 16 5" diameter liquid

scintillators (front plane 2" thick,
rear plane 5" thick)

• Variable planar gap

MINER
• 16 3"x3" liquid scintillators
• Compact
• Battery operable
• More uniform field of view

,p,..,,:„.,,,„4„,„,,,,14.,01

Cf-252, 30 minutes

SVSC
• Single scintillating

volume
• More compact

High-rise to high-rise source localization



8 Radiation Detection at SNL

1D Time-Encoded Imager
• Large cells for high-efficiency
• Designed to localize weak

sources at large standoffs

Beryllium Reflected Plutonium
(BeRP) ball in a r shell of High

Density Polyethylene

Neutron Coded Aperture Imager

.111
8-Shooter Stilbene Array
• Correlated n/y analysis based

on fast timing

• Imagers based on encoded masks increase the total
image resolution

• Reduced per-event resolution and energy resolution

2D Time-Encoded Imager
111111111111r..W.1.=

2D coded mask
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Alternative Signature Detection
9 Electromagnetic Signatures

• Electromagnetic properties provide a complementary signature to
traditional radiation detection techniques for detecting and
characterizing special nuclear material and other threats

• Potential applications spaces include:

• Container screening

• Detection of shielded SNM

• Detection of hidden objects/voids

• Low-frequency AC magnetic fields can be used to penetrate
through shielding materials

• Magnetic induction tomography
(IIT)probes the conductivity of
the material

• Susceptibility and nuclear magnetic
resonance (NMR) signatures are a
potential path towards improved
specificity
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10

Magnetic Induction Tomography
Imaging Array Concept

• Helmholtz coil with AC driving signal
generates uniform field across sensor array
plane

• Induced eddy currents in conductive objects
perturb the field

• Lock-in amplifiers compare measured signal
relative to driving signal

• Multiplexer steps through each sensor coil
sequentially to build 2D pixelated image

Low-frequency penetration of conductive shielding

10 20

2

Signal
Generator

-In Amplifi

•

-Driving signal
-Measured signal
-Relative signal

1-lelmholtz Crn
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Magnetic Induction Tomography
Imaging Array Results

Magnetic Induction Tomography vs. x-ray Radiography

Pb bottom

Pb top

Cu bar

A 0.2" Cu bar is visible between two 0.25" thick lead sheets in a 40 Hz MIT image but is not
visible in a 3-minute 450 kVp x-ray image

Depleted Uranium Shielded by 0.25" Lead

Detection of lead-shielded depleted uranium through 0.5 cm thick
lead sheet using implicit background subtraction

(apb = 4.6 MS/m, au = 3.6 MS/m)

Firearm Screening

• y1.• •

ibiLPZ..

PAL "IA • . -
11, IRA • •
•IN•iN.1111

'AM.* • me Or..
' " • "A14111,-

• 1.,010P-=
• • .••• •••!•••

Magnitude image at 10kHz of a Glock training pistol ep



Step-Wedge Measurements I
Material Characterization

• Various radiography step-wedge

samples with thicknesses between 0.1"

and 1"

• Samples imaged in threes with copper

in the middle for reference

• Frequency swept between 100 and 10k

Hz in 27 logarithmic steps

Radiography sample collection

Measurement sets
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Group # Sample 1 Sample 2 Sample 3

1 Lead Copper Aluminum 6061

2 Stainless Steel Copper Titanium

3 Wood Copper Carbon

4 Beryllium Copper Magnesium

5 Plexiglas Copper Epoxy

6 Tungsten Copper Tantalum

1

1

I
1
I

Lead-Copper-Aluminum
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Step-Wedge Measurements
•Lead-Copper-Aluminum

Image progression as a function of frequency
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Step-Wedge Measurements
Dependence on material thickness
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Step-Wedge Measurements
Dependence on driving frequency
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Measurements of Depleted Uranium
16 Penetration through shielding

Measurement of smaller DU samples allowed for simultaneous analysis

of shielding and DU

Unshielded DU coupon

Lead-shielded DU coupon

Aluminum-shielded DU coupon

Lead-shielded DU bullet
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Measurements of Depleted Uranium
Dependence on driving frequency

• Frequency-dependent response investigated at five pixels

• Induced eddy currents appear to undergo a resonance, resulting in a peak
in the relative phase measurement

• Resonant frequency can be used to inform dual-frequency correction and
suppress shielding in the image
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Alternative Signature Detection
Nuclear Magnetic Resonance Spectroscopy

NMR Detection Technique

1. Apply a magnetic field to align the nuclei

2. Apply an excitation pulse at the Larmor

frequency to tip the atom into the

transverse plane

3. Measure the magnetic field produced as

the nuclei precess about the aligning field

4. The frequency spectrum of the

measured signal is used to characterize

the sample

• The spin quantum number depends on A and Z of the nucleus (e.g. 1H

has spin = 1/2 and gyromagnetic ratio of 42.6 MHz/T)

RF transmitter

external magnetic field,' N,

electrons

• Typical high-resolution NMR measurements are performed using multi-

Tesla aligning fields with Larmor frequencies in the MHz range (e.g. in a

7T field 1H has a Larmor frequency of 300 MHz)

receiver

nucleus with a
magnetic moment

CH=CH

Time Domain
(FID)

Glyceride

time (t)

Fourier Transform

-00C-CH2-

=CH-CH2-CH= =CH-CH2-
C

\J\

6 5 4 3 2 1

F 1 [ppm]

http://www.scientistlive.com/content/benchtop-nmr-spectroscopy



Low-Field NMR
19 I Motivation

• NMR is a standard tool for identifying the chemical
nature of organic compounds, but can be applied
to any nuclei with and odd number of protons
and/or neutrons

• Earth's field NMR utilizes low-frequency (5., 2 kHz)
excitation pulses to stimulate nuclei at their
characteristic Larmor frequency

• Coil array work has demonstrated how low-
frequency magnetic fields can be used to penetrate
shielding

• Can we apply this concept to nuclear magnetic
resonance and use low frequency EM interrogation
to detect and potentially characterize shielded
threat objects?
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in explosives and SNM
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Low-Field NMR
Motivation

• The signal strength is expected to be in the
pT-fT range, which will require high-sensitivity
magnetometers for detection

• A large body of work exists using SQUID
magnetometers, including the detection of the
1H NMR signature through 2 mm of copper

• SQUIDS require cryogenic cooling, making
them difficult to field

• Commercial availability of atomic
magnetometers present an opportunity to
develop a field-deployable system (if we can
get high enough sensitivity at earth's field)
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(Matlachov et al. 2004. LANL)

20 10

-0 mm

Input coll of the FT
Kapton heaters

Atomic cell
Glass oven

NMR sample

Output coil of the FT

Laser beam

Ferrite shield Thermal insulation

MRI at 3.2 kHz using a SQUID (top) and an

atomic magnetometer (bottom). (Savukov et

al. 2009. LANL)
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1 Challenges
• Earth's field is uniform enabling larger "samples", but the NNW signatures will be
weakened and broadened due to low-aligning fields, shielding, standoff, and the potential
for solid state materials

• High sensitivity magnetometers are a must

• Shielded materials may be subject to an an unknown alignment field

• \MR signatures might be identified by sweeping through a range of frequencies

• Chemical shifts are typically used to determine the molecular form of a sample, but these
are not detectable at low fields,

• J-couplings are available at low fields, and can help with characterization (if we can detect
them)

• Commercially-available vector atomic-magnetometers do not yet operate at Earths field
and do not have an large enough sensitivity bandwidth

• Might be able to perform active field cancellation

• RF-tuned magnetometers may help



Low-Field NMR
22 Project Objectives

1. Standup low-field NMR tested

• Demonstrate detection at controlled-fields at and below Earth's field using pickup coils

• Replace receive coil with QuSpin Gen-2.0 QZFM for improved sensitivity and drop fields to < 200nT

2. Explore options for improving functional range of high-sensitivity detection at Earth's field

• Expanded bandwidth and external field cancelling coils to increase operating background

• Move toward RF-tunable magnetometer

3. Demonstrate detection of 1H NMR signature of shielded samples at Earth's field

4. Demonstrate detection of other shielded isotopes in solution state at Earth's field

5. Demonstrate detection of chemical signatures using J-coupling to help identify chemical form of sample

6. Demonstrate detection of NMR signatures in solid-state

7. Perform measurements on kilogram quantities of SNM and other relevant threat objects
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Low-Field NMR Progress
Development of a Low-field NMR Testbed

• Initial design is based on the setup described in: C. A. Michal, 'A low-
cost spectrometer for NMR measurements in the earth's magnetic field,"
(2010) Data acquisition software being developed
in LabVIEW

• Three separate coils used for pre-polarization, transmit, and receive

• LabVIEW interface allows control of transmit and pre-polarization coils

• Transmit signal generated by an Agilent 33250A function generator
operated in burst mode and passed through a current divider

• Receive signal (coil or SERF:j read out using
14-bit 100 kS/s NI-9215 ADC

• Voltage induced on receive coil is ex-Dected to be in the 100s of nV
range, so is passed through an ampFication/bandpass circuit with a gain
of 50000
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Low-Field NMR Progress
Atomic Magnetometer Hardware

• QuSpin Zero-Field Magnetometer — Gen 2.0
• Vector magnetometer

• 7-10 fT/V-Hz sensitivity

• 135 Hz bandwidth

• 200 nT max background

QuSpin Gen-2.0 QZFM

Twinleaf MS-1L shield with QuSpin Gen-2.0 QZFM inside

Data Plots
Total Count count„

M Frnt Restart Avg 1 locilt) I 1.455 I

370

2
Y.
t 365

t led

352

010:

Mcm uo raaa 0020302

100

tal,t, MD 

Ambient field measurement by QZFM inside shielding

TwinLeaf MS-1L Magnetic Shield
o Four-layer MuMetal Shield

o Shielding factor: 106

Magnetic noise: 16: fT/V-Hz

Internal field coils

3-axis magnetic field coil to provide fields
up
to —50 [.,CT (i.e. Earth's field)

Also has 5-axis gradient field coil and
Z-axis second order gradient coil

1
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Low-Field NMR Progress
Atomic Magnetometer Testing

Low-Field Pulse Testing

• Larmor frequency of 1H at 200 nT is 8.5 Hz

1500

1000
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g, -500
2
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 248 pTpp burst

Background

• A 5 turn Helmholtz coil driven by a Keysight 33600A waveform 
1500 

0.5 1

Time (s) 
.5 2 2.5 3 3.5

generator was used to provide a low-amplitude, 8.5 Hz magnetic Low-amplitude 8.5 Hz pulses generated by 5-turn

field pulses in the detectable range of the QZFM Helmholtz coil and detected by QZFM

QZFM Frequency Response

• A 20 Hz square wave was used to test probe the frequency
response over a larger bandwidth

• Standard analog output is limited by a low-pass filter
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by 5-turn Helmholtz coil



„1 Summary

• High-risk, high-payout endeavor could ultimately lead to tools for the detection and
characterization of high-explosives and shielded SNM in sealed containers

• Mission success would result in a new capability would meet the needs of multiple
sponsor mission areas including

• Emergency-response diagnostics

• SNM search/screening

• Arms control

• Safeguards

• This is a challenging problem that requires both proof-of-concept in the applications
space as well as continued development of a suitable atomic magnetometer

• Many of the challenges of this problem are being addressed individually by various
research groups, but the combination is likely unique to our desired application space

• Combining mission knowledge with technical expertise through collaborations across
SNL and with external partners will drive innovation and increase the likelihood of a
successful outcome
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