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Exawind project overview

Goals/motivation for predictive simulations
• Advance our fundamental understanding of the flow physics governing whole wind plants

• Predict the response of wind farms to a wide range of atmospheric conditions
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Nalu-Wind

• Open source: https://github.com/Exawind/nalu-wind 
• Builds with Spack

• Unstructured finite volume, low-Mach flow solver
• 2nd-order node-centered, low-dissipation FV scheme
• Arbitrary order accurate element-based

continuous finite volume scheme
• Fully implicit
• Mixed-order interfaces

• C++. Built on "Trilinos"
• Kokkos for performance portability
• Tpetra, MueLu, ShyLU, Ifpack2, Belos packages

• Also support hypre
• STK package

• IOSS for 10
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Nalu-Wind physics capabilities

• Atmospheric boundary layer modeling

— Monin-Obukhov wall models

— Boussinesq, Coriolis forcing

• Full turbine modeling

— Sliding mesh, overset technologies

— Hybrid RANS-LES models

• "TAMS" model being developed at UT Austin

• Actuator line modeling

— Coupling with the OpenFAST code
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Element K

Control volume finite element

• Node-centered FV (EBVC) production discretization in nalu-wind

— Design is semi-flexible in terms of discretization

— Linear CVFEM traditionally the "main" discretization Dual cell 12';

• Basic idea for CVFEM: define a test space of indicator functions

— Other names "finite volume element", "covolume method", etc.
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CVFEM Operators

• In one-dimension:

• Operators:

• • • I( • *.
L)

vv.71 = h. ( GLL
3 7, )

{ 

—1 i = i

3.= +1 i=j+1

0 otherwise

where hi CX) = — Ejk Crk and dk is the k-th Lagrange interpolant between {-1, "Xc1f L, G. L
. . Xp  +1}

This construction is done so 111 dx 1Q):(x)hj(x) = fk is the k-th interpolant between t 3 J j=1

• For a tensor-product element in 3D, we have

ksf=A®1/17®147 P=101-0I lYs ( n1_,®I0I 10D0I _10I0D)

SQ=WOAOW P=1-010I lY (D® i®I 1-0:601- 1-01®D)

Sz=W(x)W®O P=iongi lYs (Do/oi IoDoi /0/0:6 )
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Poisson Equation

• Over a dual cell:

Au=f—>i Vu•ndS=f fdx
OQ* S2*

• This becomes on an element,

[Wi 0 Witte] = (W W W) [det J fe
Wrnik = det Jmjk (LTTJ) mijk es

l<m<p 1<j,k<p+1

• Use explicit SIMD types and sum factorization for apply

• Uses Trilinos-Belos package for the Krylov solver implementation

— No matrix required
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Matrix-free Preconditioning

• Just Jacobi for momentum

- Does OK at low (-1) Courant numbers

• Continuity uses AMG with a sparsified "edge" Laplacian

- Sparse system is passed to "MueLu", which creates the preconditioner
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Case (1443 dofs) Avg Continuity GMRES iterations

Order 1 full system

Order 8 no preconditioner
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129

Order 8 full sparsified system 15

Order 8 edge sparsified system
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Re=1600 Taylor Green Vortex Breakdown

u(t = 0, x, y, z) +uo sin(x) cos(y) cos(z)

v(t = 0, x, y, z) uo cos(x) sin(y) cos(z)

w(t = 0, x, y, z) = 0

• Standard, turbulent-like test cas.e

— Just trigonometric functions to set up

— Three resolutions (96/p)3, (144/p)3, and (192/p)3

• Cases are run underresolved (2563 for DNS)
— How does the scheme behave outside the asymptotic range?

— LES will be underresolved (in localized spatiotemporal zones, hopefully)
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Results

• High order scheme captures initial laminar breakdown and scale
generation and behaves "OK" when resolution insufficient
— Need some stabilization beyond the pressure stabilization
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Overall
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• Computational cost is roughly independent of
polynomial order for polynomial orders 4-7

— Slower than the edge-based finite volume

— Slow down is due to extra equation essentially

— Still faster than the default element scheme

fi p = 3 before
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im 
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• Maybe some benefit in marginally underresolved case

— Resolved region performs very well, affecting rest of result

11 Exascale Computing Project

105.

10
3  

_2
1 0

1 Default Refinement Level
• RO

• 0 
Z

p=3 Eefore R1

O d ill t EBVC 
R2

• Defult

735 
Iwo 2

EBVC

Default

1, 8 7 
0

ESC

•

Le2rror

10
-1

EXRSCRLE
COMPUTING
PROJECT



Wall-resolved channel flow LES

• Kim, Moser, Mansour (1999) Re,- = 590 case

• "Wall adapting local eddy-viscosity" model of
Nicoud and Ducros (1999)

• Run 64x64x48 nodes up to 192x192x128 in 3/2 increments

— DNS: 384x257x384

— Constant pressure gradient

p 7

12 Exascale Computing Project

Steamwise velocity (+)
12 24.0

.4•1111.0,

EBVC
Steamwise velocity (+)

0.0 12 24.0

EXRSCRLE
COMPUTING
PROJECT



Effect of resolution on predictions
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Effect of polynomial order on mean velocity prediction
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Effect of order on the resolved Reynolds stress
RO R1
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Overall
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Resolution Resolution

• High order performs better

— Some variation for lower-high order

— Turbulence model does well but could be adapted

• EBVC is relatively faster than the Taylor-Green

— Preconditioner somewhat worse, momentum particularly

— Partially due to switch to Haswell
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Mixing layer

ot•
Mixture Fraction
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Closing

• Accuracy vs time looks good for LES flows
— Still places for improvement

• Not working on the GPU
— Written using Kokkos heavily but still work to do

• Looking at a flow more directly relevant to wind

— Looking at mixed discretization for near-turbine
and off-turbine regions
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