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Exawind project overview

Goals/motivation for predictive simulations
« Advance our fundamental understanding of the flow physics governing whole wind plants

» Predict the response of wind farms to a wide range of atmospheric conditions
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Nalu-Wind

* Open source: https://qithub.com/Exawind/nalu-wind
» Builds with Spack

* Unstructured finite volume, low-Mach flow solver
« 2"9-order node-centered, low-dissipation FV scheme
» Arbitrary order accurate element-based
continuous finite volume scheme
* Fully implicit
* Mixed-order interfaces

« C++. Built on “Trilinos”
» Kokkos for performance portability
« Tpetra, MuelLu, ShyLU, Ifpack2, Belos packages
* Also support hypre
« STK package
* |OSS for IO
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Nalu-Wind physics capabilities

“Tis image cannat currntly be dispayed,

« Atmospheric boundary layer modeling
— Monin-Obukhov wall models
— Boussinesq, Coriolis forcing

* Full turbine modeling
— Sliding mesh, overset technologies

— Hybrid RANS-LES models
"TAMS” model being developed at UT Austin

 Actuator line modeling
— Coupling with the OpenFAST code
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Element K
\

Control volume finite element \

* Node-centered FV (EBVC) production discretization in nalu-wind
— Design is semi-flexible in terms of discretization I

P

— Linear CVFEM traditionally the “main” discretization Dual cell

« Basic idea for CVFEM: define a test space of indicator functions

L L 11

— Other names “finite volume element”, “covolume method”, etc.
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CVFEM Operators
* In one-dimension: o O ® o o

» Operators: . X -
Lij=4; (&7"), Dij =

¢ (25T (—1 =
Wl—h(GLL), Dwzg

A=q4+1 i=j5+1

~GLL
(xi ) |0 otherwise
where h;(Z) = — 72:1 dj, (&) and dj, is the k-th Lagrange interpolant between {—1, &7, ... 25", +1}

This construction is done so f_l dz 1gs(x)hj(z) = ;5. £ is the k-th interpolant between {xGLL}p—I—l

* For a tensor-product element in 3D, we have

SP=AQWeW F=1®Ix] D°=(D®I®] IeD®I I®I®D )
SI=WeARW P=I9Il D'=(DxlI®l I9D®I I®I®D )
SF=WeWeA F=I19I®l D=(Dglel IeD®I 11D )
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Poisson Equation

Over a dual cell:

Au:f:>/ Vu-ndS = fdx
o0} Q>

This becomes on an element,

A —1

o s i ro=detJ, i (JTT)
Y 8% [GT o D] = (Wa W @ W)[detJ o f] mik = det T (3°3),,,
; I<m<p 1<5k<p+1

C:

Use explicit SIMD types and sum factorization for apply

Uses Trilinos-Belos package for the Krylov solver implementation

— No matrix required
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Matrix-free Preconditioning *—o o *—o

 Just Jacobi for momentum
— Does OK at low (~1) Courant numbers

o0
» Continuity uses AMG with a sparsified “edge” Laplacian
— Sparse system is passed to “MuelLu", which creates the preconditioner ® o
@ @ o—0
Case (1443 dofs) Avg Continuity GMRES iterations
Order 1 full system 5
Order 8 no preconditioner 129
Order 8 full sparsified system 15
Order 8 edge sparsified system 9 X' e
- CYP s
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u(t =0,x,y,2) = +ug sin(x) cos(y) cos(z)
v(t =0,x,y,2) = —ug cos(x) sin(y) cos(z)
w(t=0,z,y,z) =0

e Standard, turbulent-like test case

— Just trigonometric functions to set up
— Three resolutions (96/p)3, (144/p)3, and (192/p)3

« Cases are run underresolved (2563 for DNS)

— How does the scheme behave outside the asymptotic range?
— LES will be underresolved (in localized spatiotemporal zones, hopefully)
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Results

* High order scheme captures initial laminar breakdown and scale
generation and behaves "OK"” when resolution insufficient

— Need some stabilization beyond the pressure stabilization
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Overall
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Emm p = 3 before
s EBVC CrsMatrix
B p =1 CrsMatrix
Hm p = 1 Matrix-free
p = 8 Matrix-free
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N RefinemRe1nt Level °
- G D@v'lt Refinement Level
. . . ® RO
« Computational cost is roughly independent of _ po@ore © L
polynomial order for polynomial orders 4-7 i E@‘;’J
_ . L 42 o D It
Slower than the edge-based finite volume £, °® otp ©
— Slow down is due to extra equation essentially E EBVC
— Still faster than the default element scheme g @ e
. . ™ 3 o
Maybe some benefit in marginally underresolved case cgyC
. . 10’5 e
— Resolved region performs very well, affecting rest of result 10 p
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Wall-resolved channel flow LES

« Kim, Moser, Mansour (1999) Re, = 590 case

« “Wall adapting local eddy-viscosity” model of
Nicoud and Ducros (1999)

* Run 64x64x48 nodes up to 192x192x128 in 3/2 increments
— DNS: 384x257x384
— Constant pressure gradient

EBVC —
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Effect of resolution on predictions

Mean

Resolved Reynolds stress

(ay*

& DNS
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—- p=7, RO
=7, R1
=7, R2
=7, R3
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Effect of polynomial order on mean velocity prediction

RO
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Effect of order on the resolved Reynolds stress

R1
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Overall

o
N
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 High order performs better 10 _
£ Refinement Level
— Some variation for lower-high order 5 e o
§106_ 6®® o @ @ ® R2
— Turbulence model does well but could be adapted : | 00 e»® e o o ® 3
= 4 @D | \ (L
gmsr
« EBVC is relatively faster than the Taylor-Green e
-]
— Preconditioner somewhat worse, momentum particularly =~ § " P,
— Partially due to switch to Haswell 7
103 -3 ’ ’ -2 -1
10 10 10
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Mixing layer

Mixture Fraction

0.25 05 0.75
| |
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Closing

» Accuracy vs time looks good for LES flows
— Still places for improvement

* Not working on the GPU
— Written using Kokkos heavily but still work to do

 Looking at a flow more directly relevant to wind B \ind speed (m/s)
_ : - : —- ALk | 1.00 5 9.00
Looking at mixed discretization for near-turbine 1

and off-turbine regions
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