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2 I Outline

What is privacy and why does it matter

The membership inference attack and defending against it

■ Experimental Results

■ The difference between defense and no defense

■ Effect of layers and regularization

■ The effects of noise



3 What does privacy mean in a machine learning context?

Training Data Model Model User

Data used to train a model will not be leaked by the model.



4 Example — Snapchat has a public model but private data

Private - user faces Public - face
as training data

User is free to
detection model interact with model



5 I Why does privacy matter?

• Legal risk to leaking information

• Competitive advantage to holding certain data

• Hinders applications of machine learning
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6 Membership inference attack

Attacker chooses
data point

Defender model
queried

1

Attacker analyzes Was data point in
model output defender training set?

Attacker tests if a specific data point was part of the training set.



7 Defense - Private Aggregation of Teacher Ensembles (PATE)

Step 1:

Step 2:

Sensitive
Data

Data 1 1 Teacher 1 

./irlata 2 HOPI Teacher 2 

Incomplete
Public Data

Data 3 Teacher 3 1
• • •

Data Teacher n

Teacher 1 1

r Teacher 2

Teacher 3

Teacher n

Queries

Defend sensitive data by using noise and data partitioning.

Semi-supervised knowledge transfer for deep
learning from private training data. Papernot et al.



8 I Experimental Setup

• Data - Extended MNIST (EMNIST)

m 47 classes

• Digits and letters

• Model - Neural networks

N Attacker only has access to confidence outputs

• Leveraged Kahuna to run parameter sweeps



9 I Results — No privacy vs. PAT E protection
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PATE drastically reduces vulnerability to membership inference.



10 I Results — Effect of convolutional layers on privacy
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Convolution offers a way to improve accuracy and privacy simultaneously.



I11 Results — Dropout and our variations of it

• Typical use — randomly drop nodes during training process

• train — dropout teacher nodes during teacher training

• query — dropout teacher nodes when student queries

[ Teacher 1

Teacher 2

Teacher 3

• 4 •

Teacher n

Teacher 1

Teacher 2

Teacher 3

' Teacher rt

Vote + noise H Student



12 I Results — Dropout as a privacy defense
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The effectiveness of dropout as a defense depends on where it is applied.



1 3 Results — Does the attacker need an exact copy of the data point?

Effect of adding gaussian noise to query. All data classes.
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Attack can still be successful even with noisy version of training points.



14 I Conclusion and Future Work

■ Important takeaways

■ Various hyperparameters and regularization schemes affect privacy

■ Even black box models are vulnerable to membership attacks

■ Privacy in machine learning is still a young field

■ Future work

■ Understand extent to which dropout offers protection

■ Vary images in different ways — rotations, cropping, etc. and test the effect on
membership inference

■ Develop new attacks and defenses

■ Try different datasets



1 5 I Feel free to contact us with questions or comments.

• Presenter:
• Gary Saavedra

• gjsaave@sandia.gov

• Project lead:
• Jeremy Wendt

• jdwendt@sandia.gov


