

Musgrave Ritual: Machine Learning Privacy Attacks and Defenses

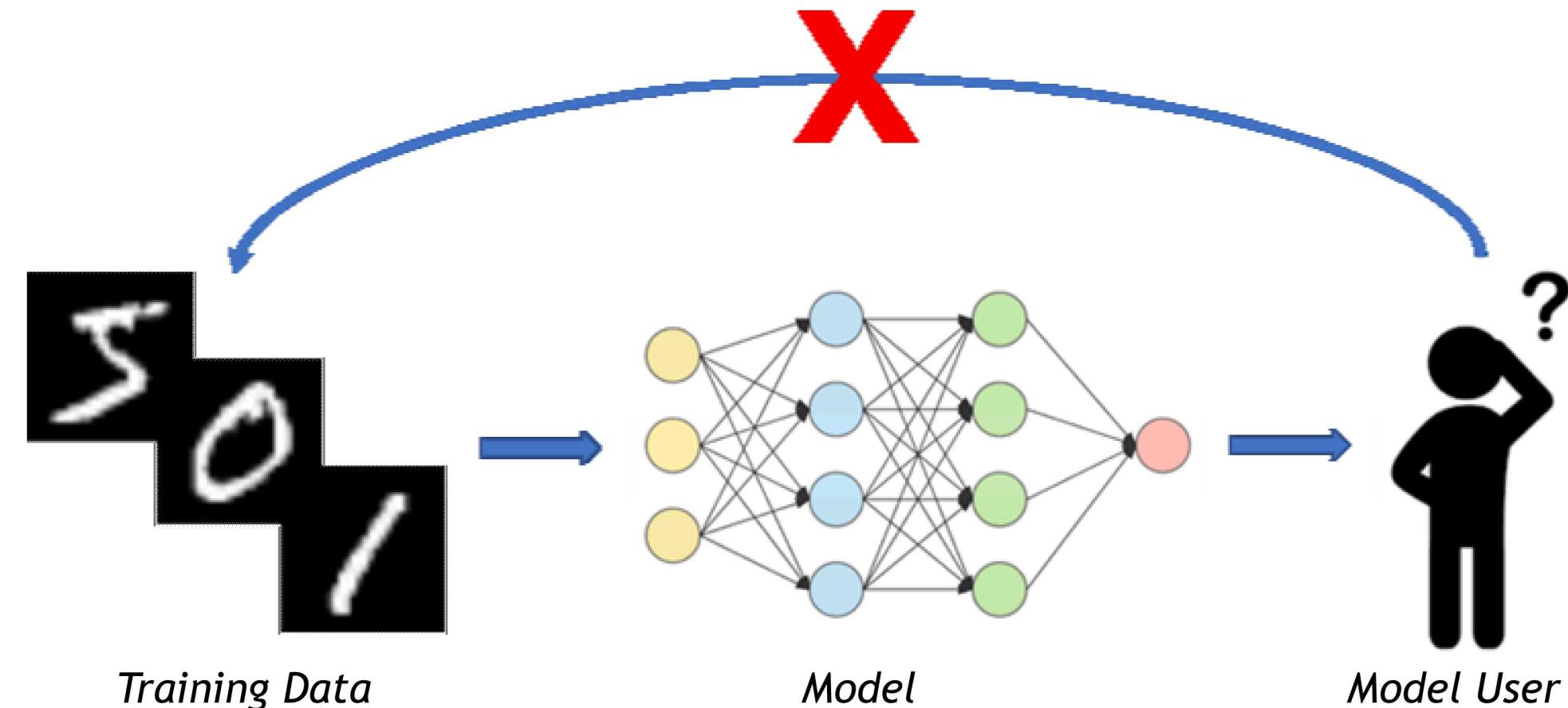
Gary Saavedra, Jeremy Wendt, Philip Kegelmeyer,
Joe Bertino, Cosmin Safta

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

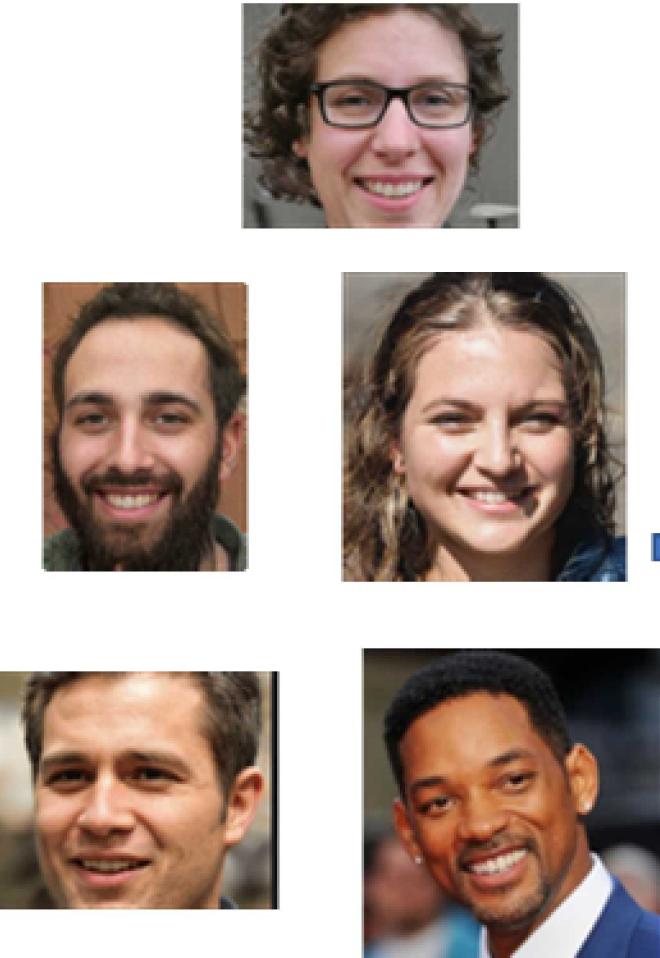
- What is privacy and why does it matter
- The membership inference attack and defending against it
- Experimental Results
 - The difference between defense and no defense
 - Effect of layers and regularization
 - The effects of noise

What does privacy mean in a machine learning context?

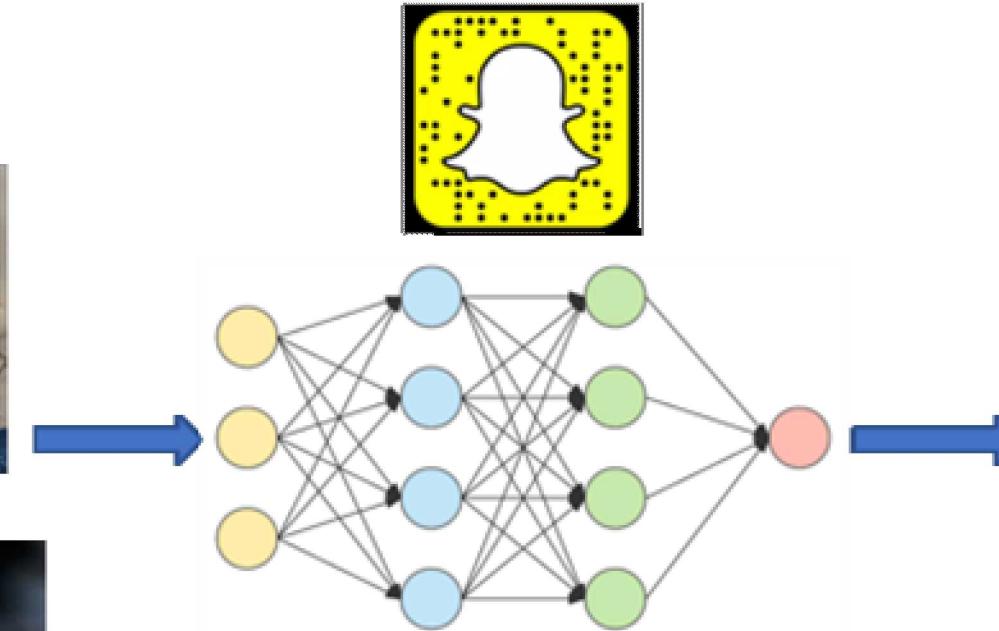


Data used to train a model will not be leaked by the model.

Example – Snapchat has a public model but private data



*Private - user faces
as training data*

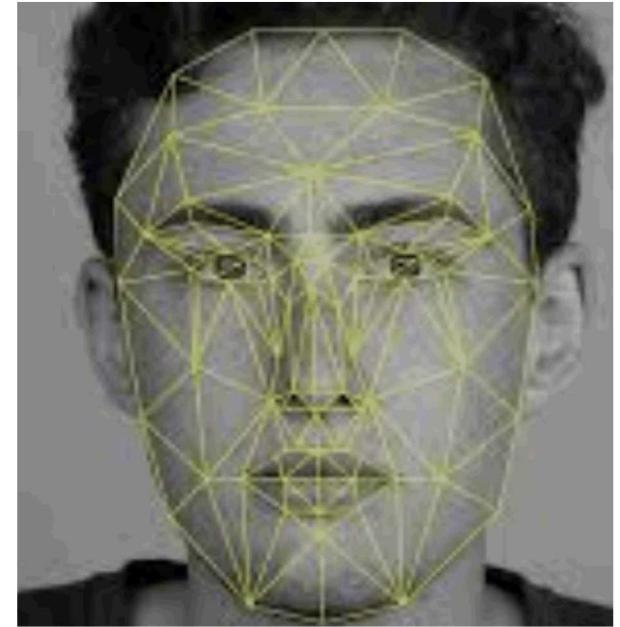


*Public - face
detection model*

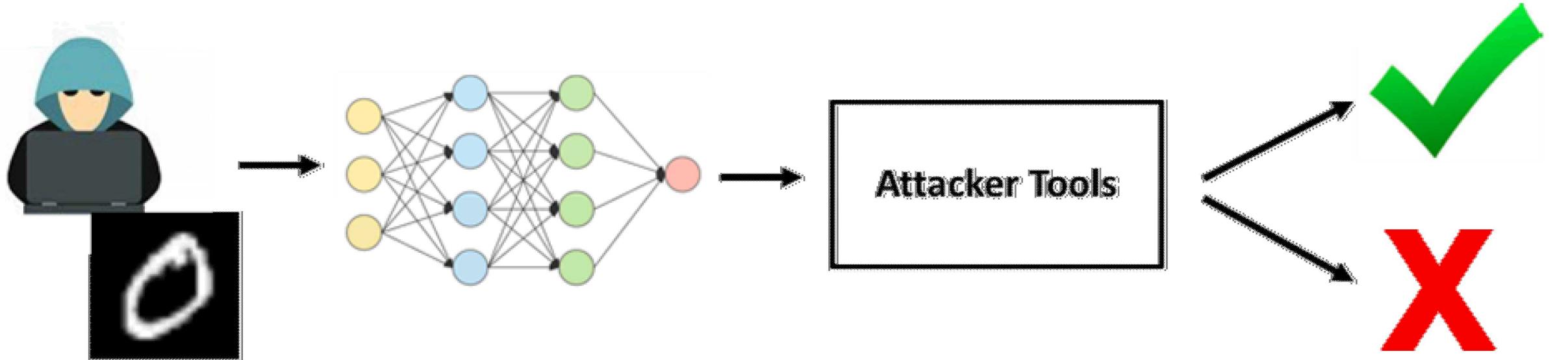
*User is free to
interact with model*

Why does privacy matter?

- Legal risk to leaking information
- Competitive advantage to holding certain data
- Hinders applications of machine learning



6 | Membership inference attack



*Attacker chooses
data point*

*Defender model
queried*

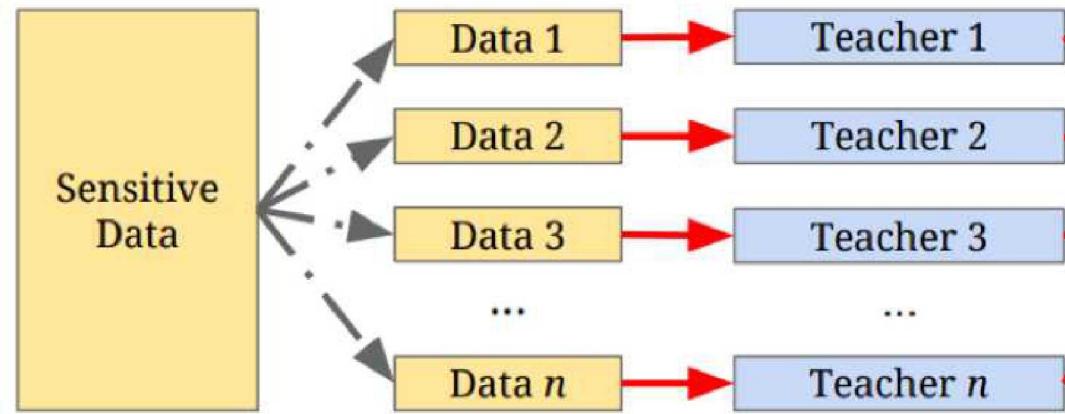
*Attacker analyzes
model output*

*Was data point in
defender training set?*

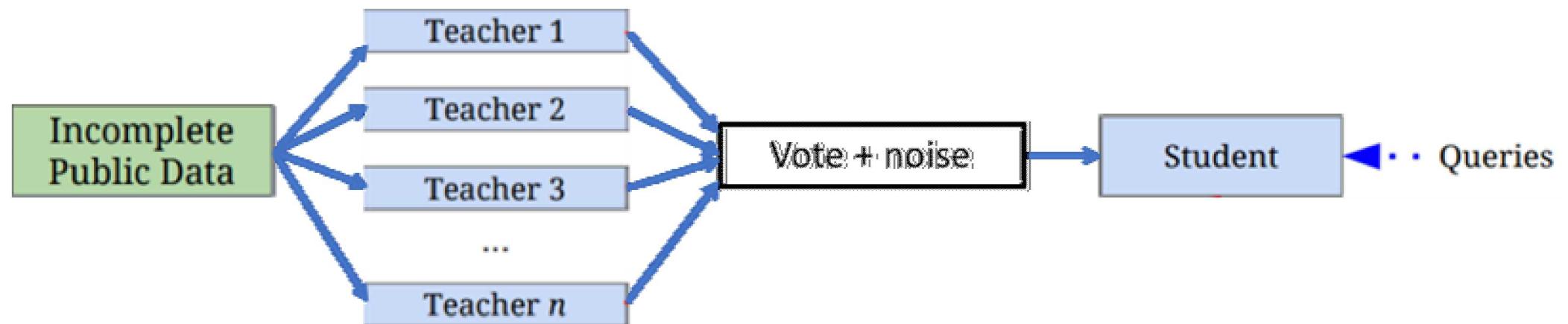
Attacker tests if a specific data point was part of the training set.

Defense - Private Aggregation of Teacher Ensembles (PATE)

Step 1:



Step 2:



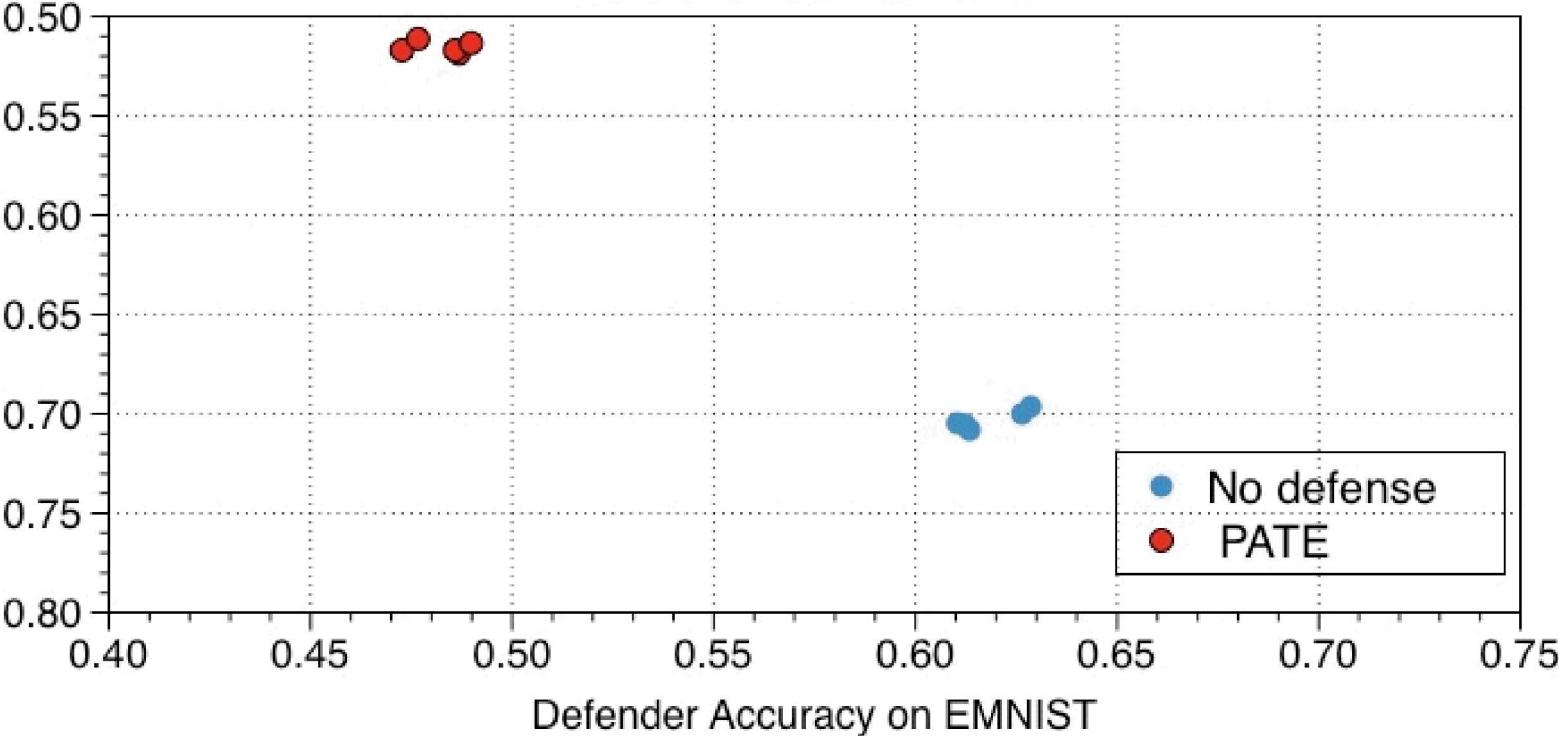
Defend sensitive data by using noise and data partitioning.

- **Data** - Extended MNIST (EMNIST)
 - 47 classes
 - Digits and letters
- **Model** - Neural networks
 - Attacker only has access to confidence outputs
 - Leveraged Kahuna to run parameter sweeps

9 Results – No privacy vs. PATE protection

Membership Inference Accuracy

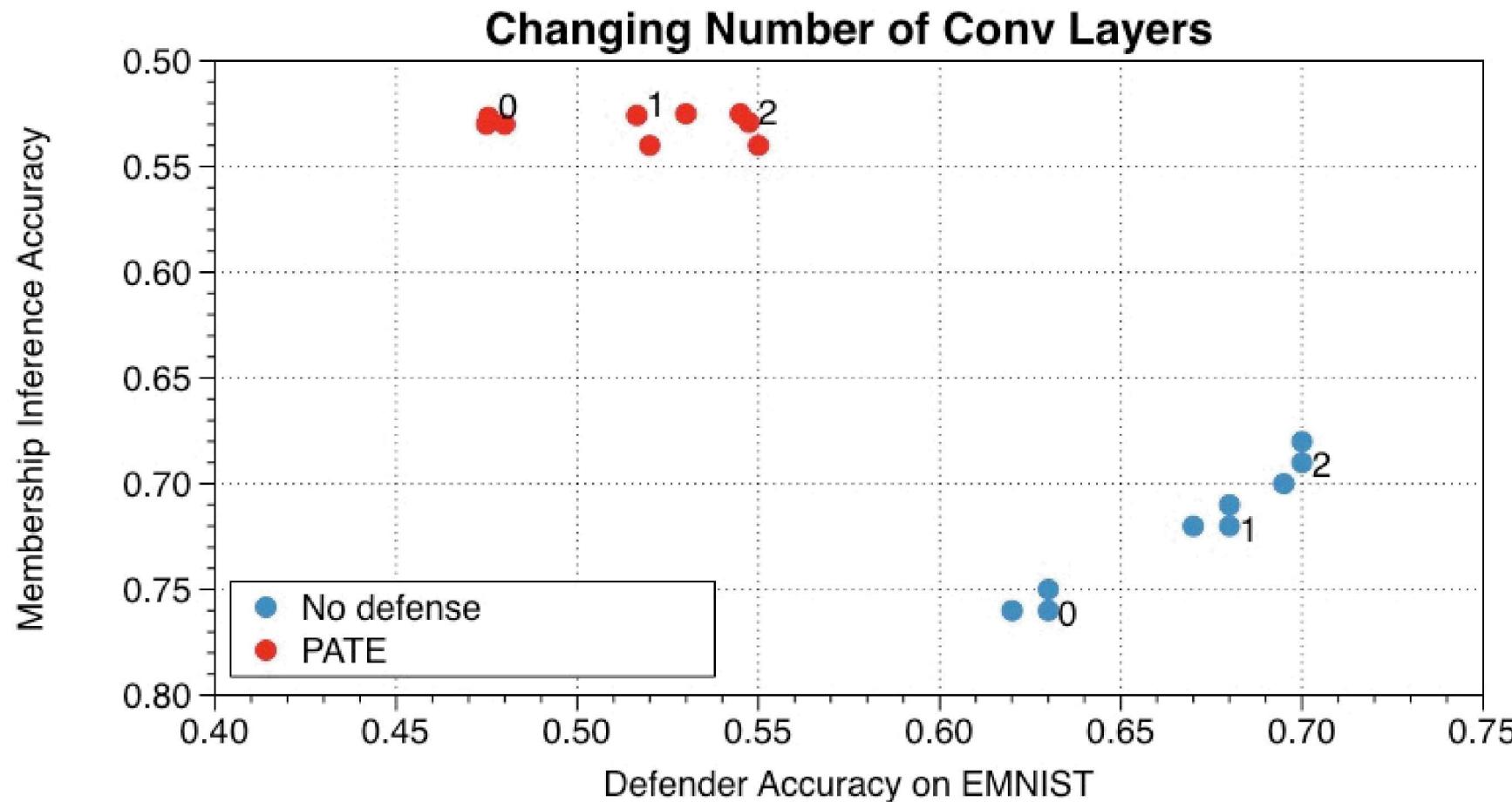
No defense vs. PATE



x-axis: random chance = 0.02
y-axis: random chance = 0.5

PATE drastically reduces vulnerability to membership inference.

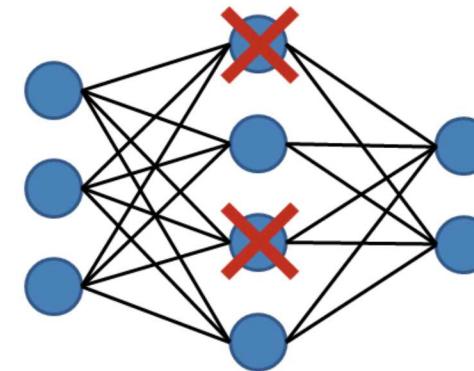
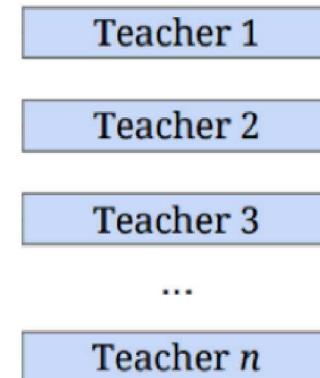
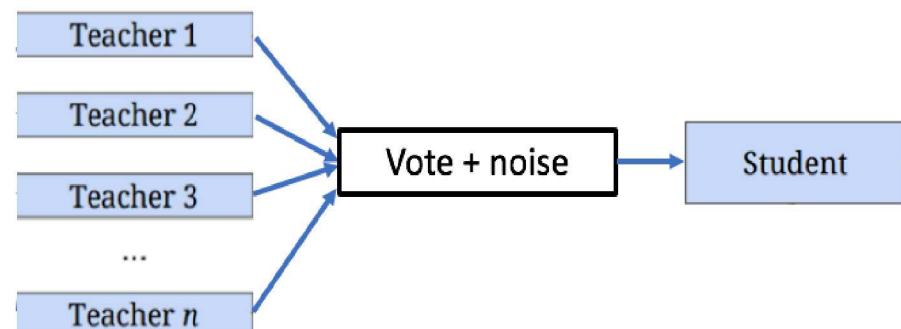
Results – Effect of convolutional layers on privacy



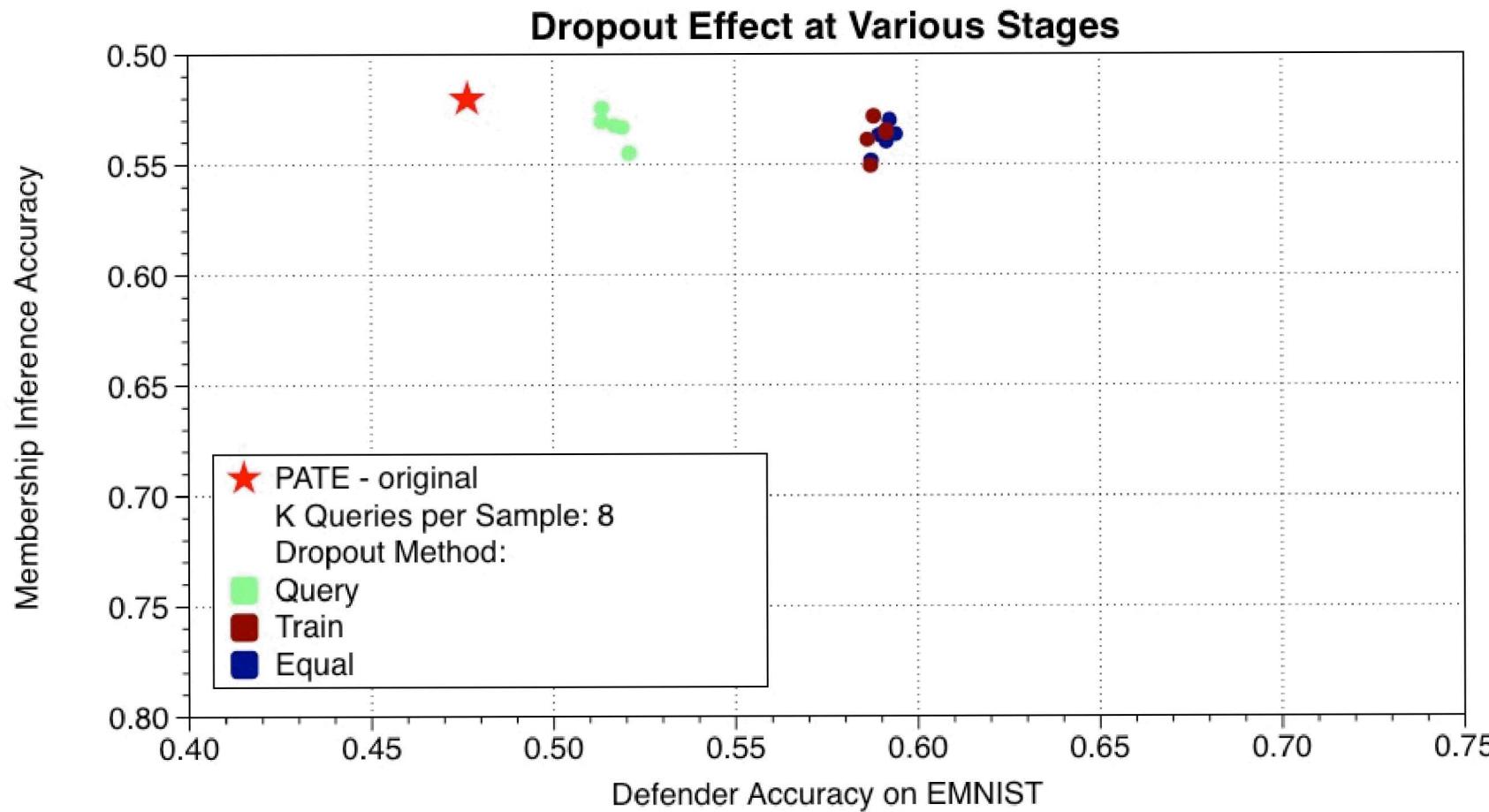
Convolution offers a way to improve accuracy and privacy simultaneously.

Results – Dropout and our variations of it

- **Typical use** – randomly drop nodes during training process
- **train** – dropout teacher nodes during teacher training
- **query** – dropout teacher nodes when student queries

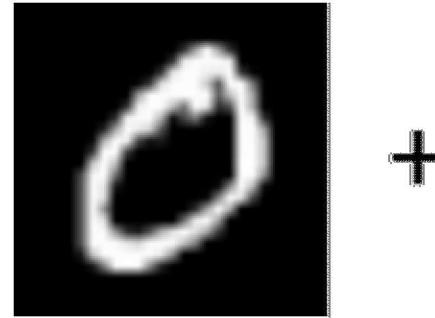


Results – Dropout as a privacy defense

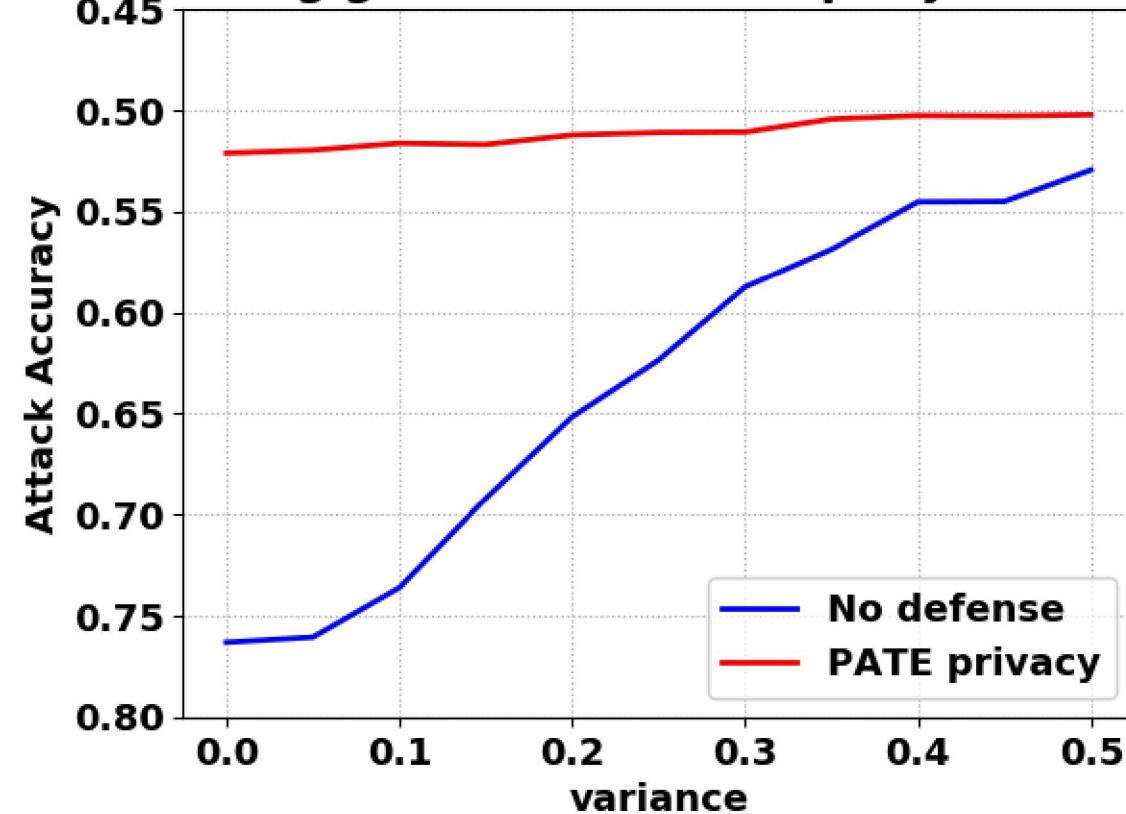


The effectiveness of dropout as a defense depends on where it is applied.

Results – Does the attacker need an exact copy of the data point?



Effect of adding gaussian noise to query. All data classes.



Attack can still be successful even with noisy version of training points.

Conclusion and Future Work

- **Important takeaways**
 - Various hyperparameters and regularization schemes affect privacy
 - Even black box models are vulnerable to membership attacks
 - Privacy in machine learning is still a young field
- **Future work**
 - Understand extent to which dropout offers protection
 - Vary images in different ways – rotations, cropping, etc. and test the effect on membership inference
 - Develop new attacks and defenses
 - Try different datasets

Feel free to contact us with questions or comments.

- **Presenter:**
 - Gary Saavedra
 - gjsaave@sandia.gov
- **Project lead:**
 - Jeremy Wendt
 - jdwendt@sandia.gov