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2 | Outline

= What 1s privacy and why does it matter
* The membership inference attack and defending against it

= HExperimental Results
" The difference between defense and no defense
= Effect of layers and regularization

=" The effects of noise



3 I What does privacy mean in a machine learning context?
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Training Data Model Model User

Data used to train a model will not be leaked by the model.




4 | Example — Snapchat has a public model but private data

Private - user faces Public - face User is free to
as training data detection model interact with model



s I VWhy does privacy matter!

= Legal risk to leaking information
= Competitive advantage to holding certain data

= Hinders applications of machine learning




Membership inference attack

v 1 |
A '~ = | Attacker Tools
Ll o . a
Attacker chooses Defender model Attacker analyzes Was data point in
data point queried model output defender training set?

Attacker tests if a specific data point was part of the training set.




7 I Defense - Private Aggregation of Teacher Ensembles (PATE)

Step 1:

Step 2:

P Datal P Teacher 1
2 /'r Data2 = Teacher 2
Sensitive é ’
Data ‘B pata3 P  Teacher 3
N
4 Datan P Teacher n
Teacher 1
A Teacher2 . ,
Incomplete | Vote + noise. H—b Student  «@- - Queries
Public Data Teacher 3 J ' . |
Teacher n

Defend sensitive data by using noise and data partitioning.

Semi-supervised knowledge transfer for deep
learning from private training data. Papernot et al.



s | Experimental Setup

= Data - Extended MNIST (EMNIST)

" 47 classes

= Digits and letters
" Model - Neural networks |
= Attacker only has access to confidence outputs A

" Leveraged Kahuna to run parameter sweeps




o I Results — No privacy vs. PATE protection

Membership Inference Accuracy

No defense vs. PATE
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PATE drastically reduces vulnerability to membership inference.




0 | Results — Effect of convolutional layers on privacy

Changing Number of Conv Layers
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Convolution offers a way to improve accuracy and privacy simultaneously.




11 | Results — Dropout and our variations of it

= Typical use — randomly drop nodes during training process

= train — dropout teacher nodes during teacher training

Teacher 1

Teacher 2

Teacher 3

Teacher n

Teacher 1

Teacher 2

Vote + noise

= query — dropout teacher nodes when student queries

Teacher 3

Teacher n

Student




12 | Results — Dropout as a privacy defense

A Dropout Effect at Various Stages
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The effectiveness of dropout as a defense depends on where it is applied.

O e e



13 | Results — Does the attacker need an exact copy of the data point!

Effectooxsadding gaussian noise to query. All data classes.
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Attack can still be successful even with noisy version of training points.




14 1 Conclusion and Future Work

= Various hyperparameters and regularization schemes affect privacy
= Even black box models are vulnerable to membership attacks

|
= Important takeaways I
= Privacy in machine learning is still a young field H

= Future work

= Vary images in different ways — rotations, cropping, etc. and test the effect on
membership inference

= Develop new attacks and defenses

= Understand extent to which dropout offers protection I
= Try different datasets I



15 | Feel free to contact us with questions or comments.

= Presenter:
= Gary Saavedra

" ojsaave(@sandia.gov

= Project lead:
" Jeremy Wendt
" idwendt@sandia.gov




