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Problem Statement
The Arctic is warming at 2-3 times the rate of the rest of the US

• Since 1979 sea-ice has lost 51% in area and 75% in volume

Increasing ice-free season

Increasing wave energy and storm surge

There is evidence of accelerating coastal erosion rates
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• Increasing sea water temperatures

• Warming permafrost
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Infrastructure

• 6 active DOD sites along
northern coastline [3,4]

• 30 coastal villages threatened [5]

• Anticipated economic impact is
-1Billion [5,6]

Anticipated infrastructure
development should consider
spatially varying erosion and

deposition rates along Northern
Alaska coastline

Coastal food webs
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• biogeochemical influx into ocean effects ecological stability of region

Carbon-climate feedbacks

• Permafrost stores half of all terrestrial organic carbon (1,330-1,580Pg [7], twice the amount in the atmosphere);

degrading coastline mobilizes the carbon content
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State of the Technology
Unique erosion process in Arctic

• Ice acts to bind unconsolidated soils in permafrost

• Melting ice causes failure

Erosion dependent characteristics

• Geomorphology

• Geophysics

• Boundary Conditions

Min

Polygon runs
. Trough

•

Pennedrost leo wedge

State of the art permafrost erosion modeling

• Trend projection, empirical relationships, 1-D steady
state heat flow, ...

• Modeling typically estimates boundary conditions
and does not account for geomorphologies or
geophysics
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ARCTIC COASTAL EROSION (ACE)

MODELING APPROACH
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future

Micro-scale
Model

10's of meters &
storm duration

Meso-scale
Model

10's of km's &
seasonal duration

mechanical erosion for the permafrost Arctic coastline.

• Multi-physics finite element terrestrial model
coupled with high-fidelity model of water Ievels
along a coastline
• 3-D thermo-chemo-mechanical constitutive

relationships allowing any terrestrial deformation
• Time-varying boundary conditions of same fidelity
and resolution as terrestrial model

oceanographic model

Si ri i icarit Wave Height (
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3.0 July 23rd 2017. 6am.

Macro-scale
Model

North Slope & annual

• A weighted combination of micro-scale models representing a
stochastic distribution of terrestrial configurations along a coastline
• Site specific probability distribution functions of geomorphology and
geophysics used to weight erosion output

• Evaluating ocean "exposure metrics" to represent time-varying ocean

• A weighted combination of meso-scale models to capture circum-
Arctic terrestrial and oceanographic variation
• Fidelity built-upon a series of archetypes at micro- and meso-scales

field measurements
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Mear e Boundary Conditions
Macro-scale

Model

Atmospheric, Terrestrial, Oceanographic

Historical

• Arctic system reanalysis (ASR) v2 & HYCOM

Present Day

• Field work

Projections

• Downscaled earth system model predictions under

IPCC RCP8.5*
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*The RCP8.5 combines assumptions about high population and relatively slow income growth with modest rates of technological change and energy intensity

improvements. leadina in the lona term to hiah enerav demand and GHG emissions in absence of climate chanae policies.
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FY18 & FY19

Micro-Scale Modeling
validated, single storm, tightly coupled thermo-chemo-mechanical

Time-varying boundary conditions

• Water level, temperature, & salinity defined through coupled,
bathymetry dependent oceanographic models

• Air temperature, permafrost temperature, & radiative flux (potential)

Terrestrial coastline

• Multi-physics finite element model developed in Albany*

• Geomechanical testing to determine coupled thermal-mechanical
strength characteristics

Site-specific geomorphology & geophysics

• 3-D stress in terrestrial model evolves based on these
characteristics

Validation campaign

model
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(photo credit: Hoque & Pollard 2009)

*Albany is an implicit, unstructured grid, finite element code for the solution and analysis of multiphysics problems developed by SNL and released in public domain

Ice wedge
Permafrost
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Meso-s
Mod

0Macro-scale

Model

Oceanographic Modeling

co Development of
wave field in the
Arctic to develop
nearshore BC's

• surface winds
• ice cover

z Wave set-up
conditions 2-way
coupled with
circulation

• high resolution near
shore environment

• wave energy
inclusive of induced
current effects

Circulation and
co thermal
cm' conditions 2-way

coupled with
waves

• capture induced
currents in
nearshore

• capture set-up
(storm surge and
runup)

Key Advances

• High-fidelity development of oceanographic B.C.'s

• Inclusion of ice coverage for fetch limited wave growth

• Knowledge of wave energy along broad coastline

• Set-up determination inclusive of bathymetry and wave energy
conditions
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WW3 polar stereographic model initially developed by NRL (Erick Rogers)

and NOAA (Arun Chawla)
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Meso-s
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Model

Terrestrial Modeling
Ice(p,E,u, H,y) Permafrost(p,E,u, H,y)

Key Advances

• 3-D unsteady thermal flow and chemical characteristics

• Tightly coupled strength and thermo-chemical states

• Failure modes develop from constitutive relationships in
Finite Element Model (no empirical relationships!)

• Material removed as failure strength surpassed
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Terrestrial Modeling
Ice(p,E,u, H,y) Permafrost(p,E,u, H,y)

Key Advances

• 3-D unsteady thermal flow and chemical characteristics

• Tightly coupled strength and thermo-chemical states

• Failure modes develop from constitutive relationships in
Finite Element Model (no empirical relationships!)

• Material removed as failure strength surpassed
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Coupled Thermal-Mechanical Response
Icewedge

3]335mkPa
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Stress [kPa]compression tension

niche

Albany is a finite deformation plasticity model

• 3x3 tensor of compressive, tensile, and shear components
computed everywhere in the model (J2 class)

• Constitutive relationships require stress-strain curves up to failure
as function of temperature and ice volume for local permafrost
samples

SNL's Geomechanics Laboratory

• Environmental chamber to control temperature whilst performing
unconfined compressive tests & direct tensile tests
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Micro-scale simulations

• Most terrestrial input variables treated as invariant over
a decade

• Establish validity of independent & discrete storm
modeling

• Apply historical and projected boundary conditions

Determining weight magnitudes

• Determine input variables' probability distribution
functions

• Understand bluff stress state sensitivity to input
variables

• Optimize erosion weighting schemes to match annual
retreat rates over a decade
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Micro-scale set-up 3

FY19 & FY20

Meso-Scale Modeling
Weighted combination of micro-scale models verified over a decade
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Micro-sc.
Model

Variabilities

Oceanographic B.C.'s

• Inundation height

• Water temperature

• Water salinity

• Storm duration

Geomorphological Features

• Niche

• Bluff height

• Ice wedge

• Permafrost polygons

Geophyscial Features

• Sediment

• Porosity

Geomechanical Features

• Poisson's Ratio

• Youngs Modulus

• Ice fraction

• Salinity

• Yield Strength

• Hardening Modulus
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Micro-sc.
Model

4# Flux Estimation

Estimate infrastructure impact due to linear land losses

Verify erosion amounts over decade period to determine near-shore inputs of:

• Sediments • Nutrients • Toxins

Determine recirculation of eroded materials

Partner to evaluate near-shore ecological stability
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future

Macro-Scale Modeling
Weighted combination of meso-scale models

Classify circum-Arctic terrestrial and
oceanographic typologies

Use historic and projected meso-scale
simulations representative of the typologies
in order to:

• Establish skill of the parameterized
representation

• Identify most erosion-vulnerable locations

• Determine total sediment, nutrient, and toxin
flux into the Arctic ocean
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Extent of permafrost, 35 ofarea

Continuous (90-100%)

▪ Thick overburden cover (>5-10 m

▪ Thin overburden cover (e5-10m)
and exposed bedrock

Discontinuous (SO-9096)

Thick overburden cover (>5-10 m}

▪ Thin overburden cover (c5-10m)
and exposed bedrock

Sparadic (10-5090

Isolated patches (0-1 10%1

Subsea permafrost

Arctic glaciers and ke sheets

Arctic Monitoring and Assessment Programme
Ardk ClirnaN Issues 761 1



FY18 - FY20

SUMMARY
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Meso-scale
Model

Macro-scale
Model

Advancements

Establishing enduring relationships with Arctic invested parties

• University of Alaska Fairbanks,

• UT Austin

• USGS

• University of Alaska Anchorage,

• USAF

• DOE

• CRREL,

• Geological Survey of Canada (GSC),

• BLM

•
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Meso-scale
Model

Macro-scale
Model

Advancements

•
Mackenzie delta, NASA Landsat July 18, 2017

Redistributed eroded sediment in the
environment enables

• prediction of deposition locations, and

• ecological stability analyses.
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Meso-scale
Model

Macro-scale

Model

Advancements

Approach for moving from mechanistic micro-scale to
stochastic meso-scale model sets stage for
integration into global climate models (macro-stage)
built upon parametric analyses of input variables

• Member of the newly proposed DOE sponsored

InteRFACE project focused on coastal processes in the

Arctic
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Meso-scale
Model

Macro-scale
Model

Advancements

3-D model capable of predicting erosion from
the material's constitutive relationships
capturing all types of deformation (block &
denudation) leading to

• data driven understanding of the characteristics
that cause erosion

• a tool to guide military and civil infrastructure
investments, and

• an improved understanding of coastal food web
impacts and carbon-climate feedbacks.
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