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Abstract

Machine and deep learning methods have evolved
as core technologies in many scientific and
engineering problems (e.g., image analysis).
However, they lack robust methods to quantify and
control their uncertainties due to overfitting among
other technical challenges.

In this talk, we introduce a Bayesian approach to
neural networks that creates probabilistic ML
predictions using Variational Inference
approximations, in contrast to classical softmax point
estimates.



Background

$ Machine Learning (ML) T e lﬂb

IS a set of methods to solve classification, regression and
clustering problems, enabling fast analysis of massive data
volumes. Advancing Al tech., ML is empowered by efficient
algorithms, training data, and powerful computing tools.

Naive Bayes Gaussian process k-means clustering
classification regression
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Background

+ Uncertainty Quantification (UQ) )}} DAKOTA

» Characterization of aleatoric/epistemic uncertainties

* Rigorous statistical, V&V, and estimation procedures

« Sensitivity analysis, Bayesian calibration,
dimensionality reduction, surrogate modeling, etc.

Y = M(X,0) Y ~pdf(u, o?)
| 1 1 2(5c LANNAL A N2t NN
Deterministic model Model with uncertain

inputs/parameters
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Problem Statement

+ ML/UQ Technical Challenges

« Data: Limited obs./exp., costly sims, noise, errors, gaps
* Models: Unknown parameters and boundary conditions
e Curses: Dimensionality, nonlinearitv. multi-ohvsics

===+ True function
—— Model

-=++= True function
—— Model

+==== True function
—— Model

@ Observa tions

Uyse = 0.043 fyes = 1.868
oGsp = 0.425 6ier = 0.007 o4sp = 5.5€8
Poly deg 1 Poly deg4  Poly deg 15
underfitting fitting overfitting

Sampling highest
uncertainty regions

Regression with UQ
ranges, noisy data



Significance

$ Informed Decision Making

« High-stakes and cost-sensitive national security applications

* Unintended and harmful Al behavior [Amodei 2016]

« Evaluate trust/risk and iteratively improve the ML model reliability
* Numerical sims of physical systems are rife with uncertainties

« Improve quality of learning in reinforcement sequential choices

“Predictions without Variational inference
UQ are neither « , (VI) approximations to

predictions nor -@- upgrade machine

. S . . .
actionable.” |- learning predictions

Begoli E, bhattacharya T, kusnezov from point-estimates to approximate §
D., Nature Machine Intelligence 2019 probability distributions
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Significance

+ Sandia Mission-Relevant Applications

NUMERICAL IMAGE PROCESSING SENSOR NETWORKS HUMAN FACTOR
SIMULATIONS Additive Manufacturing Graph Neural Networks  Performance Evaluation
Turbulence Modeling Radar/SAR/X-ray Rare Event Prediction Eye Tracking
Subsurface Modeling Imagery Genomic Analysis Cognitive Load

Hypersonics Image Segmentation Estimation
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Solution Approach

£ NN Parametric Model [Murphy 2012, Bishop 2006]

y = fz(Wz(f1(W1x + b1)) + bz)

Training data D = {X, Y}, Forward F’:SS I
o
Observations X = {x;}'., € R
tJi=1 ‘ .

Hidden layer(s) W = [W{ - W] @ w,w

@ @
S 9

Back Propagation

Output variables Y = {y;}\"., € RF
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Solution Approach

+ Softmax for classification

p=p0 = kiR w) = /E) ) o G0)
J

> Max Likelihood single-estimate
minimizes cross-entropy between the true class distribution
and the softmax output.

y £ ) p(yIf® )

a S 0.71 s class a
b 4 - 0.26

c 2 0.04
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Solution Approach

z Bayesian Neural Networks [Polson 2017, Ghahramani 2016. Seeger 2009]

To span the parameter space of 6

Prior

w~N(0,1)

Posterior

D(IX,Y) = p(Y|X, w)p(w)
' p(Y|X)

p(YIX,X,Y) = jp(?lf, w)p(w|X,Y)dO - Intractable integration

Variational Inference

Hamiltonian Monte Carlo (HMC) [Neal 2012], Laplace approximation [MacKay
1992], Dropout [Ghahramani 2016], Bayes by Backprop [Blundell 2015].
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Solution Approach

M.DL
¥ Variational Inference [Kwon 2018, Shridhar 2019, Gal 2017]

Approximation using a variational distribution g, (w) which
minimizes the Kullback-Leibler divergence

KLy = [p(Y|X,w)qp(w)dw — KL(qg(w)||p(w|X,Y))
0" = argmin KL(CI@ (w)||p(w|X, Y)) «» From integration to optimization
0

We sample w® from qo(w|X,Y) w» variational method
KLy =YX logq(w|X,Y) — logp(a)(i)) — logp(X,Y|w(i))
~» Tractable

The predictive distribution is

PR X,Y) ~ j (1%, )q(w)do



Solution Approach

+ Variational Inference Approximation

Mean E,{p(¥|x)} =~ —Z _1p(Y|x, 65) T: I\/IC samples
Variance o/{p(3|%)} = P = zt 1P
> Aleatoric > Epistemic
1T | | )
LS diagp0 —pT+ 2y (e P)Pe - P
T L= T t= 1

Aleatoric Uncertainty (irreducible)
« persists even in the limit of infinite data, e.g., measurement noise.

Epistemic Uncertainty (reducible)
« Vanishes in the limit of infinite data, e.g., model parameters.



Preliminary Results

Toy problem — 2D binary classification

- & g 3 0.42
2 ) ¢ 2 - SRS
0.8 3 0.8
i b ey o : 0.36

S 0 e i; (o] . i o 0:24_\5
Softmax classification Mean of approximate Variance of approximate
boundary with no uncertainty predictive posterior using VI predictive posterior using VI
Image Segmentation
Heat Conduction | —
mean variance
e mom® - : (a) Input Image (b) Ground Truth (c) Semantic (d) Aleatoric (e) Epistemic
. S i U i U i
[Ob erai 201 9] egmentation ncertainty ncertainty

[Kendall and Gal 2017]
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Conclusions

* New Bayesian techniques to approximate the ML posteriors.
* ML predictions without UQ are not actionable.

Future Work:

 Quality, computational complexity, and scalability
* e.9., stochastic Variational Inference [Hoffman 2013].

 Non-Bayesian approaches
* e.g., deep ensembles [Balaji L. 2017].
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Thank You!
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