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Abstract
M.D

Machine and deep learning methods have evolved
as core technologies in many scientific and
engineering problems (e.g., image analysis).
However, they lack robust methods to quantify and
control their uncertainties due to overfitting among
other technical challenges.

In this talk, we introduce a Bayesian approach to
neural networks that creates probabilistic ML
predictions using Variational Inference
approximations, in contrast to classical softmax point
estimates.



Background

Machine Learning (ML) K

is a set of methods to solve classification, regression and
clustering problems, enabling fast analysis of massive data
volumes. Advancing Al tech., ML is empowered by efficient
algorithms, training data, and powerful computing tools.
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Background

T Machine/Deep Learning Generic Workflow

M.D
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Background

T Uncertainty Quantification (UQ) DAKO iA

M.D

• Characterization of aleatoric/epistemic uncertainties
• Rigorous statistical, V&V, and estimation procedures
• Sensitivity analysis, Bayesian calibration,

dimensionality reduction, surrogate modeling, etc.
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Problem Statement
M.D

ML/UQ Technical Challenges

• Data: Limited obs./exp., costly sims, noise, errors, gaps
• Models: Unknown parameters and boundary conditions
• Curses: Dimensionality, nonlinearitv. multi-Dhvsics
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Significance

T Informed Decision Making

• High-stakes and cost-sensitive national security applications
• Unintended and harmful Al behavior [Amodei 2016]
• Evaluate trust/risk and iteratively improve the ML model reliability
• Numerical sims of physical systems are rife with uncertainties
• Improve quality of learning in reinforcement sequential choices

M.D
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Machine Intelligence 2019
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Variational inference
(VI) approximations to

upgrade machine
learning predictions

from point-estimates to approximate
probability distributions
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Significance

T Sandia Mission-Relevant Applications

NUMERICAL
SIMULATIONS

Turbulence Modeling
Subsurface Modeling

Hypersonics

IMAGE PROCESSING
Additive Manufacturing

Rad a r/SAR/X-ray
Imagery

Image Segmentation

SENSOR NETWORKS
Graph Neural Networks
Rare Event Prediction
Genomic Analysis

M.CL
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Solution Approach
M.D

T NN Parametric Model [Murphy 2012, Bishop 2006]

= f2(w2(fi(wix + b1)) + b2)

Training data D = {X, Y},11

Observations X={xl}N 1 E Rd

Hidden layer(s) W = [W1 ••• WL]

Output variables Y = {yi}liV_1 E IRk

Forward Pass

Back Propagation

8/5/19 10:51 AM



Solution Approach

1-

T Softmax for cleissification

13 = p 0) = kli , (0) = efCl'wk)II ef(i'wi)
j

-AAP> Max Likelihood single-estimate
minimizes cross-entropy between the true class distribution
and the softmax output.
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Solution Approach

T 13ayeE;ian Neural Networks [Po!son 2017,

To span the parameter space of 0

Prior
co —.7\f (0, /)

Posterior

73(0)1x, Y) =
13(1X)(0)13(w) 

1301X)

130)1i,X,Y) =f 130)1i)(0)13(w1X,Y)dO -AAr*

M.D

Ghahramani 2016. Seeger 2009]

Intractable integration

Variational Inference
Hamiltonian Monte Carlo (HMC) [Neal 2012], Laplace approximation [MacKay
1992], Dropout [Ghahramani 2016], Bayes by Backprop [Blundell 2015].



Solution Approach

T Variational Inference

M.CL

[Kwon 2018, Shridhar 2019, Gal 2017]

Approximation using a variational distribution go (co) which
minimizes the Kullback-Leibler divergence

3C-Evi = f p(YIX, (D)qt, (Ocko — KL(qt9(0))1119(wlX)17))

0* = arg min KL( 79 (w)illo(wlX)1 )) .A/v* From integration to optimization
0

We sample co(i) from qe(colX,Y) -Ano variational method

3avI -,,- Ei/Y=1 log q(coIX,Y) — log p(co(i)) — log /0,11(09

-vv* Tractable
The predictive distribution is

73(i)li, X, Y) ,:iI19(y1X, co)q(af Aw



Solution Approach

T Variational Inference Approximati

Mean Eq{13(li)) ' TiEr=1P(j)li)

Variance o-Aps(j)li)} ',,-
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T: MC samples

P = 71 E7t7=-1 "Pt
-AA-> Epistemic

Aleatoric Uncertainty (irreducible)
• persists even in the limit of infinite data, e.g., measurement noise.

Epistemic Uncertainty (reducible)
• Vanishes in the limit of infinite data, e.g., model parameters.



Preliminary Results

0

Toy problem — 2D binary classification

0 8 
2

0.6

1

0.4

0.2

Softmax classification
boundary with no uncertainty

Heat Conduction
mean

• •

0

10

20

30

90

50

60

variance

0 0
0 0

[Oberai 2019]

0.12

0 10

0.08

0 06

0.04

0 02

0 00

-1

-2

-3
-3 -2 O 2

Mean of approximate

2
0.8

1

0.6

.C4.11 •
0

•

•L • 'eV
0A ..••••

• 

•
-1

9. 9 2.••

1 0.2
-2

0.0 -33 
-3 -1

...%

• 

O 1 2

0.42

0.36

0.30

0.24

0.18 

0.12

0.06

3 
0.00

Variance of approximate
predictive posterior using VI predictive posterior using VI

(a) Input Irnage

image Segmentation

(b) Ground Truth (c) Sernantic
Segrnentation

(d) Aleatoric
Uncertainty

[Kendall and Gal 2017]

(e) Episteniic
Uncertainty
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Conclusions
M.CL

• New Bayesian techniques to approximate the ML posteriors.

• ML predictions without UQ are not actionable.

Future Work:

• Quality, computational complexity, and scalability
• e.g., stochastic Variational Inference [Hoffman 2013].

• Non-Bayesian approaches
• e.g., deep ensembles [Balaji L. 2017].
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Thank You!

M.CL
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