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I Motivation

Can we produce English descriptions of functions from
source code?

If we can, analysts can quickly identify regions of interest, find similar codes, etc.

INPUT (Source code)

\
void yyset_lineno (
int Jine_number ) {

yylineno =
line number , }

OUTPUT (English summary)

"Set the current line
number."

I
I
J



3 Approach

Data Idea:

Utilize comments from existing source code to use as training data set.

Algorithm Idea:

Explore deep learning methods for "translating" source codes to English summary

INPUT (Source code)

void yyset_lineno ( int
_line_number ) { yylineno

= Jine_number ; }

SOURCE -> ENGLISH

Encoder

OUTPUT (English summary)
♦

"Set the current line
number."



Data Acquisition

Mined GitHub C/C++ files and associated comments
Used clang to extract C functions and associated
comments

Duplicates removed prior to preprocessing

Dataset
-1.4M train

338k validation

271k test

1

GitHub

clang
I

OUTPUT (Source code)

void yyset_lineno ( int
_line_number ) { yylineno

= _line_number ; }

1
OUTPUT (English summary)

1 "Set the current line number."



5 Algorithm

deep learning

encoder-

1 decoder
models

sequence to
sequence
models

.40

other types of
models

The model
that we use
sits here:

transformer
model



6 What is a Sequence to Sequence Model?

Our first illustrative application:

a yellow topped wall meat and
broccoli.

a zebra standing next to a zebra in a dirt
field.

Lu et al. (2017)



7 Sequence to Sequence Model Applications

LSTM

LSTM

LSTM

LSTM LSTM

LSTM

LSTM

Encoding stage

<pad> <pad> <pad> <pad>

hiESTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM LSTM

Decoding stage

https://vsubhashini.github.io/s2vt.html



8 Sequence to Sequence Model Applications
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9 Sequence to Sequence Model Applications

Raw Obsorvations Nour-ell Network Activations

Corrsidered Location

44484
r

1 It* r

iCh— •

) C°C)°C15)C:4:r .

t 'g

OLvtconio Prediction
win

Considefed Buller I
4.. 000e', '1 • ran0 00c, 0 _:

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/



10 Sequence to Sequence Model Applications

PROMPT:

In a shocking &ding, scientist discovered a herd of unicorns living in a remote, previously
unexplored valley, in the Andes Mountains. Even more surprising to the researchers was
the fact that the unicorns spoke perfect Eng11:517.

https://openai.com/blog/better-language-models/#sample1



11 Sequence to Sequence Model Applications

PROMPT:

In a shocking &ding, scientist discovered a herd of unicorns living in a remote, previously
unexplored valley, in the Andes Mountains. Even more surprising to the researchers was
the fact that the unicorns spoke perfect Eng11:517.

MODEL COMPLETION:

The scientist named the population, after their distinctive horn, Ovid's Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

https://openai.com/blog/better-language-models/#sample1



12 Sequence to Sequence Model Applications

PROMPT:

In a shocking &ding, scientist discovered a herd of unicorns living in a remote, previously
unexplored valley, in the Andes Mountains. Even more surprising to the researchers was
the fact that the unicorns spoke perfect EngliSh.

MODEL COMPLETION:

The scientist named the population, after their distinctive horn, Ovid's Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is
finally solved.

• • •

https://openai.com/blog/better-language-models/#sample1



1 3 Sequence to Sequence Model Applications

Deep learning models that take a sequence of items and outputs another sequence of
items

Generic input-output (sequence-sequence) format

Successful across disciplines (machine translation, image captioning, etc)

suis étudiant
_J

111111.

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

ENCODER DECODER

https://jalammargithubio/visuafizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/



14 Sequence to Sequence Model Applications

Deep learning models that take a sequence of items and outputs another sequence of
items

Generic input-output (sequence-sequence) format

Successful across disciplines (machine translation, image captioning, etc)

INPUT

( _le suis etudiant
 i

'4\

THE

RANSFORMER
-110-

OUTPUT

I am a student

https://jalammargithub.io/visuafizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/



15 Transformer Architect!
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Vaswani et al. (2017)



16 Transformer Architecture Overview

OUTPUT I am a student

ENCODER

♦ 

ENCODER
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INPUT Je suis étudiant

https://jalammargithub.io/visuafizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/



17 Transformer Architecture Overview

E
N
C
O
D
E
R
 #
2
 

E
N
C
O
D
E
R
 #
1
 

Add & Normalize

Feed Forward Feed Forward
_J

Add & Normalize )
L Self-Attention

Add & Normalize

♦
Feed Fon/yard

♦
Feed Forward

L 
Add & Normalize

♦
Self-Attention

POSITIONAL
ENCODING

X X2
D
E
C
O
D
E
R
 #
 

Softmax

♦
Linear

Lt.,* DECODER #2

Add & Normalize

♦
IC Feed Forward
' 

''

♦
IC Feed Forward
 ♦

r A
,*I Add & Normalize ;‘.. _.•I
I + +I

ka..*-
I
r 1 Encoder-Decoder Attention

Add & Normalize
—1)

Self-Attention

Thinking Machines

https://jalammargithub.io/visuafizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/



18 Transformer Complexity

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention 0(7/2 • d) 0 (1) OM
Recunent 0(n • d2) 0 (TO 0 (n)
Convolutional 0 (k • n • d2 ) 0 (1) 0(logk(n))
Self-Attention (restricted) 0 (r • n • d) 0 (1) 0(n/r)

Vaswani et al. (2017)



19 Self-Attention

The animal didn't cross the street because it was too tired



20 Self-Attention

The animal didn't cross the street because it was too tired



21 Self-Attention

The animal didn't cross the street because it ia:,3 too tired

10



22 Self-Attention

The animal didn't cross the street because it \I ar too tired
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24 Self-Attention

Intuition:

Query: current token

Key: tokens to
compare with (all
tokens in input
sequence)

Value: output (to be
scaled by softmax of
Q, K operation)
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25 Self-Attention: Matrix Form
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26 Self-Attention: Matrix Form

QKT
Attention(Q, K, V) softmax(  ,  ) V
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Back to our application...

Source-to-English Experimental
Results



28 Data Preprocessing and Model Training

Tokenization
Source code: split on variable names, language keywords, operators, punctuators

Comments: replace numbers with special token, remove punctuation, normalize
whitespace

Models trained
LSTM, transformer, fconv, dynconv, transformer with back-translation

LSTMs did not perform as well as transformers (with same number of parameters)

Evaluation: Bilingual Evaluation Underscore (BLEU)
Popular metric for evaluating machine translation.

Counts matching n-grams in the candidate translation to n-grams in the reference text.
SOTA English -> French: —45

Our Model's Best BLEU: 18.26 using transformer
Training time: 16h 30m on 10 GPUs



29 Model 2: Source to English Model Results

Source Code (input):

char getField ( struct _ooara * tarcet , int x , int y )

if ( x NUMBERTOKEN y NUM3ERTOKEN x tarc-et width y

tarc-et height ) return FIELDOUTOFBOUNDS ; return *

calcFieldAddress ( tarc-et , x , y ) ;

English Comment (ground truth):

Gets what is on a given field of the ooard returns

FIELDXYZ constant

Model Prediction:

Returns the value of the field at the given coordinates



30 Model 2: Source to English Model Results

Source Code (input):

static void makedevice

devicename ; int major

NU1v3ERTOKEN ; uict uid

* devmajmin

( char * oath , int celete ) const char *

minor , ty-oe , len ; int mode

NUM3ERTOKEN ; cidt c-id NUMBERTOKEN ; char

oath strlen ( path ) ; ...rest of code omitted for s(ide brevity

English Comment (ground truth):

mknod in dev based on a -oath like sys _ahdalolockhc

Model Prediction:

mknod in cev based on a -oath like

sysblockhdahaahdahdahdahdahdahdahaahdahcahcahdal basea on a dev

based on a dev based on a -oath like sysblockhdahdahdahdal



31 Takeaways

,
You should try Transformers as a model!

We need more data.
If you have anything that might fit the bill, talk to us.

If you have any ideas on:
• How to use sequence-to-sequence models on highly structured data
• Other approaches for automated code descriptions.

Talk to us.

David Kavaler
dkavale@sandia.gov

Contact us:
Jina Lee

jlee3@sandia.gov
Kina Kincher-Winoto
kwinoto@sandia.gov


