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Abstract

The U.S. electric power grid 1s vital to daily function of all critical infrastructure sectors and directly impacts our daily
standard of living, It currently faces a complex set of challenges as it continues to age with respect to technology
modernization, environmental changes, and physical risks. Currently, for managing the US electric power grid, best
practice utilizes extensive planning and is limited to maintaining narrowly-defined operational boundaries. Blackouts
result from deviation outside the preplanned boundaries due to unforeseen interactions. System restoration, at that
point, is based on intuition and experience of system operators. The identification of system vulnerabilities and
remediations are determined by subject matter experts, but system complexity severely limits this effectiveness.

In the infrequent occurrence when grid operations depart from planned criteria, how do we move to a ‘good’
operating point? During near blackout conditions, grid operators may have an opportunity to restore the system to a
safe condition if a real-time decision support tool is available. This project investigates the development of a real-time
decision support tool for that purpose.

We explore coupling modeling and analysis methods from multiple domains to provide real-time decision support for
mission critical infrastructure.

Our research leverages reinforcement learning employing deep neural networks (DNNs), as in AlphaZero (Silver et
al., 2018), to identify "best" (or approximately optimal) resilience strategies for operation of a grid model. Current
results have demonstrated the potential for learning in a model of grid state space navigation, but continued work is
needed.
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s | Project Objective and Purpose

During near blackout conditions, grid operators may
have an opportunity to restore the system to a safe
condition if a real-time decision support tool is
available.

This project investigates the development of a real-
time decision support tool for that purpose.
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; | Existing Planning and Operations

1. In the infrequent
occurrence when grid
operations depart from
planned criterta, how do
we move to a ‘good’
operating point?

2. Where are we? Where do

we want to go? What
path do we taker
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Figure 9 - "Scatter” plot of planning scenarios.




Metaphor For Stability Margin
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Require “Stability”
Margins of Interest
Voltage Stability Margin
Transient Stability Margin

Non-Linear/Eigen-analysis
Stability Margin

System Voltage Margins

Power Line Transfer Margins

System Droop Margin
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o | General Method

The solution method uses Deep Neural Networks combined with
Monte Carlo Decision Trees to represent the sequence of control
actions and dispatches needed for the grid to increase its stability

margins.

Our approach offers the potential of a speedy
solution to this problem, with a low risk of non-
convergence. The solution will not be proven
optimal, although it will be demonstrated to be
feasible and ‘good’ during off-line testing.

Based on recent work conducted at Sandia

SANDIA REPORT
SAND2018-876234

Integrated Cyber/Physical Grid
Resiliency Modeling

@ Sandia National Laboratories




+ | Defining the State Space
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Stability Margins

. TransientStabthyBoLjnd'ary' T

Transient Stability Level Curves

Transient Stability and Voltage Stability
Level Curves




13 I The AlphaGrid Game

+ Game objective + Rules for discrete state transitions
> Increase score by moving from the current state to a > Hach state transition is bounded to nearby
state with high stability margins neighbors
° In the fewest moves possible ° Journey to the final state is performed using a
° While maintaining high stability margins during all state changes sequence of state transitions

N o States are not allowed to be re-visited
« Game setup

> Game board is the grid state space and associated
stability margin penalties

o Cannot transition to unstable state

o State transitions are

. . . . . > Selected £ h bined DNN and MCTS duri 1
° Initial state 1s a marginally stable grid condition clected from the combine o il

° Learned during training in the DNN

< Scoring includes

> An aggregate of stability margin penalties along the
journey of grid states

< End of the game 1s reached when
° The maximum number of transitions is exhausted

> No possible transition to stable states exists

o

Penalties for more transitions
o Sufficient stability margins have been reached

o

Improves for a transition to a more stable state

(e}

Degrades for a transition to a less stable state



14 I AlphaGrid Deep Neural Network Block Diagram
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15 I AlphaGrid Deep Neural Network Block Diagram
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16 I Game Play Block Diagram
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Monte Carlo Tree Search (MCTS) Block Diagram (Game Play Turn)

Return winning choice (x{*!) - fix

A 4
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19 | AlphaGrid Learning Results

Grid model operator
comparison

°Trained vs Random — average
89.6% of the time Trained
DNN out-performs Random
player (in last half of training
iterations)

Random player refers to the choice of next
state from current, where a random choice

(without repeat) reachable from the current
state 1s chosen
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20 I AlphaGrid Learning Results

Grid model operator
comparison

°Trained vs Greedy — average
26.6% of the time Trained
DNN out-performs Greedy
player (in last half of training
iterations)

Greedy player refers to the choice of next
state from current, where the most stable
next state reachable from the current state is
always chosen
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» | Conclusions

*Demonstrated feasibility of approach

*Verified learning shows improvement in comparison to
*Random state walk
*Greedy state transition

*Just getting started
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.« | Key Research Challenges

*Scalability of State Space Dimensions- Map reduction without losing fidelity

*DNN partitioning — Provides metadata, allowing insights into each solution
(geography, type of constraint, etc)

*Modity solution from discrete space to continuous space

*Use of Transfer Learning- Allows a DNN to be trained for a specific system
without starting from a blank DNN

*Management of cyclical state transitions

*Evaluation of tool across multiple scenarios- checking solution accuracy
agalnst many constraints



25 | Project Goals for 2019

* A demo will be conducted, and a paper will be submitted for
publication

* Construction and validation of a state space map at
approximate control dimensionality of R?

* Demonstrate operation of the ML decision process using the
reduced WECC system and perform solution verification
using dynamic power system analysis.

*Start the development of state space compression methods.
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- | Our Team — Sandia

° Ross Guttromson (co-PI)

> Stephen J. Verzi (co-PI)

° Christian “Birk” Jones (grid modeling)

° Asael “Ace” Sorensen (deep reinforcement machine learning)
° Raymond “Ray”” Byrne (PM)

° Charles “Charlie” Hanley (Senior Manager)



Thank You

Questions?
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» | Approach: Machine Learning
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32 | AlphaGrid Deep Neural Network Block Diagram (one-player)
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Structure (of Grid State Data) infers validity of Machine
3 1 Learning Approach

15-dimensional grid state data of 1,001 precomputed points flattened onto a 2D hex grid for visualization.
Light yellow represents high stability scores, dark blue represents low stability. The plot shows spatial
correlation and bounded stability regions, validating a machine learning approach!




. | AlphaGrid — playing the game (attacker)

On 1ts own an attacker would play a trajectory from good (yellow) to bad (blue)




5 | AlphaGrid — playing the game (defender)

On its own a defender would not necessarily play a trajectory from bad (blue) to the nearest good

(light yellow) but rather would choose good within a group of other good (yellow within a sea of
yellow)




