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1965-1975: The complexity for

minimum component costs has

increased at a rate of roughly a factor

of two per year. Certainly over the short

term this rate can be expected to

continue, if not to increase

Revision: 1975: Semiconductor

complexity would continue to double

annually until about 1980 after which it

would decrease to a rate of doubling

approximately every two years
SQuirce: Intel

Motivation-Moore's Law

As Transistor Count increases, Clock Speed Levels Off
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David House, an Intel colleague, perpetuated the misconception of Moore's Law with

performance doubles every 18 months.

Self-fulfilling prophecy, an industry driver.



Dennard Scaling

• Why haven't clock speeds increased, even though transistors
have continued to shrink?

• P = fCV2  VI+ - -leakage

• Capacitance falls with feature size

• as the size of the transistors shrink, and the voltage reduced,
circuits can operate at higher frequencies at the same power

• As transistors get smaller, power density increases because
these don't scale with size

• This created a "Power Wall" that has limited practical
processor frequency to around 4 GHz since 2006 (65nm node)

• There is a general industry consensus that the laws of
Dennard scaling broke down somewhere between 2005-2007
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The Singularity is Nigh!

• In 2005, author Ray Kurzweil published The Singularity Is
Near: When Humans Transcend Biology

• Based on "Moore's Law" artificial computation will surpass
the human brain by —2045.

• In "The Singularity Myth," physicist Theodore Modis
illustrates that in countless real world examples, growth
actually follows a logistic "S-curve.", which initially appears to
be exponential.
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Semiconductor Roadmap Predictions
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Different Computing Paradigm

• Over last decade, different
aspects of Moore's Law
have stalled

• Last decade has seen
emphasis on software, but
new hardware paradigms
are being sought

• Neural networks

• Biological neural networks

operate in parallel

• Very low energy
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Brain Inspired Computing
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Neural computation and artificial neural

networks are not the same

Neuroscience Hebb

Population coding,

Dan & Poo; Mar!cram (STOP) synapto- and neuro-genesis
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Neural computing at Sandia Labs
leverages a large research foundation

Neural Theory

Computational
Neuroscience

Modeling &
Simulation

Neuro-
Informatics *611
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Hardware Acceleration of Adaptive Neural
Algorithms (HAANA)
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Challenges for Neuromorphic Hardware

• Inspirations from neurobiology
• Low computational power (femtojoules)

• Large population of neurons (1010)

• Real time learning

• High degree of fan-in (104)

• Temporally coded information

• Manifestations of neurobiological-inspired hardware tend to
deviate from the original inspirations due to constraints in
• Device physics

• Fabrication technologies

• Readily available hardware

• It's difficult to get everything in one
package



The Spiking Temporal Processing Unit (STPU)

Overview

• A spiking neuromorphic research architecture

• Scalable and highly parallel

• Prioritizes temporal and spatial complexity of spiking neural systems

• Supports high fidelity spike timing dynamics

• Simple Leaky Integrate and Fire (LIF)
neuron model with 3 parameters

• Spiking threshold

• Minimum neuron potential

• Leak rate

• Temporal buffer for synaptic delays

• Supports arbitrarily connected
networks with configurable weights
and delays per synapse

Sandia
National
Laboratories
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Synapse Memory

• Large off chip memory

• Contains all synaptic information

• Pre-synaptic neuron designator

• Synaptic weight

• Synaptic delay (temporal offset)

• Post-synaptic neuron designator

• Enough memory to support fully connected topologies

• Unique weights and delays per synapse

• Online/Real-time updating allowed

It*
Sandia
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Laboratories
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Spike Transfer Structure

Output Spike
Consolidator

Pre Synaptic Neuron

Relative Spike Time
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Neuronal Processing Unit

Spike
Transfer
Structure

FIFO Buffer

Neuron Potential

Temporal Locatiojim

Post Synap=1.

Neuronal Processing Units
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Neuronal Computation Dynamics

SYNAPTIC INPUT UPDATE

Pd,j(t) = Rd,j(t) E ik(t)Wd,i,k(t) (1)

TEMPORAL INTEGRATION

,i(t + 1) = Pd+1,j(t)
RD-1,j(t + 1) = 0

Ai = Ai (t) + 14.0,1(t)

where d E {0,- • • ,D — 2}.

(2)

THRESHOLD, FIRE, RESET

Aj (t +1) = 
tA(Aj) if Aj < Tj

0 if Aj > Ti SPIKE (3)

A(Aj) = Aj(1— A)

where Aj(0) = O. Note that Aj(t + 1) is the value of the in-
tegration register after a complete LIFop has been performed,
Ti is the threshold to fire value of the jth neuron, and A is the
leakage value.
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Output Spike Consolidation

• Three-stage consolidator

• Pipelined efficiency

• Each stage operates in
parallel

• Number of stage 1, 2, and 3
consolidators is a parameter

• Number of stages is a
parameter

Stage 1 Stage 1

0 1
Stage 1
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Hardware Development Environment

• Current implementation on a Nallatech 385A

• 8-lane PCIe 3.0 card

• Intel° Arria° 10 GX 1150 FPGA

• Two 4GB banks of DDR3L SDRAM @ 2133 MT/s

• 2048 Instantiated neurons (4096 max)

• 32 deep temporal buffer (64 max)

• 16 parallel computation paths

• 16MB of Synapse Memory

• 18 bits per synaptic weight

• 6 bits per synaptic delay

• 8 bits for post-synaptic neuron

• 2048x2048 total synapses

Sandia
National
Laboratories
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Power Measurements on Nallatech 385

• Testing Setup

• DC Power Analyzer measuring
voltage and current

simultaneously

• Only dynamic power was

considered

• Every neuron spikes every

cycle

• Total synaptic event count is

constant in all experiments

• (a) is a fully connected

network, neuron count

decreases

• (b) neuron count is constant

and connectivity decreases
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a)

Power 
Measurements 

Continued
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Neurons to Algorithms

• A language for modeling neural systems

• Object-oriented modeling — seamless scaling

• Declarative language, not procedural

• Neural components (parts) are bundles of equations and parameters

• Parts are inheritable and extendable

• Backend designed for the STPU

• Translates N2A models to configuration information for the FPGA

• Utilizes a user space library to send the configuration data

• Executes the algorithm, loads input data, and receives output data

•
•
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Liquid State Machine (LSM)

• Algorithm for learning from sequential
(or temporal) data

• Randomly connected spiking neurons
encode complex temporal dynamics

• Temporal dynamics map well to the
STPU architecture

neuron
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Smith et al., IJCNN 2017, 10.1109/IJCNN.2017.7966150
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Synaptic Response Functions

First-order response
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Effects of Parameter Selection and Synaptic
Response Function

Linear Model
3 X 3 X15
0-I = 15

5X 5 X 5
0i = 11

4 X 5 X 10
0i = 15

2 X2 X 20
0-I =113

Linear SVM 0.906 0.900 0.900 0.914

LDA 0.922 0.946

Ridge Regress 0.745 0.717 0.717 0.897

Logistic Regress 0.431 0.254 0.254 0.815

Synaptic Response Train Sep Train Rate Test Sep Test Rate SVM

Dirac Delta 0.129 0.931 0.139 0.931 0.650

First-Order 0.251 0.845 0.277 0.845 0.797

Second-Order 0.263 0.290 0.255 0.868

First-Order 30 n.357 0.689 n 1 R 0.688 0.811

First-Order 40 0.293 0.314 0.337 0.314 0.817

First-Order 50 0.129 0.138 0.134 0.138 0.725

i.I N.

LEWIS RHODES
•

.R•OP

, 

Ret indicates the best values for default parameters

Bli indicates values that improved over second-order
2 5



STPU Results of LSM

• 220 test examples, 110 zeros
and 110 ones.

• 87.3% accuracy on zeros

• 84.6% accuracy on ones

• Distinct separation in the
data between Os and ls.
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27 Porting Algorithms to Neuromorphic Platforms

Classical algorithms are tried-and-tested

Neuromorphic platforms must meet and exceed
classical results

Neuromorphic has been cornered into learning
based algorithms only

• View neurons as highly parallel and simple
processors

• Min, Max, Sorting, Optimization, and Filtering

• Matrix multiplication

• Cross-correlation with application to Particle Image
Velocimetry

• Random Walk with application to the diffusion
equation

*Whetstone: A general ANN to SNN conversion
tool

• A process for training binary, threshold-activation
SNNs using existing deep learning methods

• Conversion introduces minimal loss in accuracy.
,

Evaluate Evaluate
Performance Performance



Particle Image Velocimetry

• Method for using particles in imagery to
determine the local velocity flow

• Underlining kernel: Cross-Correlation
• Compute Argmax (f * g)(n) =~r11,f (n) g +

• With the temporally coded algorithm

• 13 x 13 1767 neurons with 32 deep_
temporal buffer
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' .111 An.t t •

• 13 x 13 1516 neurons
with 64 deep temporal buffer

• 2 x 2 case illustrated
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Particle Image Velocimetry
W. Severa. O. Parekh. K. D. Carlson. C. D. James,
and J. B. Aimone. -Spiking network algorithms for
scientific computing.- in Rebooting Computing
(ICRC). IEEE International Conference on. IEEE,
2016. pp. 1-8.
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29 And more...

PIV Base Video 2 PIV Results Video 2

Circular Flow (Clockwise) Circular Flow (Clockwise)

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-NA0003525.

1VAYS4 LDRD

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell lntemational, Inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-NA0003525.
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Performance Results

Case: Seventy five (75) 640x480 image frames with 32x32 input tiles

• 300 tiles per image, 74 image compares, 22,200 algorithm executions,

1 execution requires 4994 ticks.

Mode Chips inst. Theoretical* Actual*/ Overhead° Overclocked / Overhead°

Serial 1 1 30.8 hrs. 31.8 hrs. / 88.7 hrs. 2.8 hrs.t / 59.5 hrs.

Parallel

Parallel

Parallel

1

16

16

5

89

110

6.2 hrs.

20.8 min.

16.8 min.

6.4 hrs. / 33.9 hrs.

21.0 min. / 4.7 hrs.

—/—

0.6 hrs.' / 27.6 hrs.

4.4 min.*/ 4.6 hrs. I

—/—

*1 tick = lms I *1 tick = 5µs I *1 tick = 200u.s I °Includes I/0

Reported data is based on a small sample average and extrapolated.



Spike Optimization

• Implement fundamental mathematical
operations through temporal coding

• SpikingSort

• SpikeMin, SpikeMax, SpikingMedian

• SpikeOpt(median)

• Implemented on the STPU hardware

Algorithm T p P Cost = Tp xP

SpikingSort 0 (k) 0 (N) 0 (kN)

SpikeMax 0 (k) 0 (N) 0 (kN)

SpikingMedian 0 (k) 0 (N) 0 (kN)

SpikeOpt (median), worst case (N / 2) 0 (N) 0 (N2)

SpikeOpt (median), IXI is constant o (1) o (N) o (N)

Sandia
National
Laboratories

Spike Optimization
Verzi, Stephen J., et al. "Optimization-
based computation with spiking
neurons," Neural Networks (IJCNN),
2017 International Joint Conference on.
IEEE, 2017.
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STPU Results of Temporal Coding

Aggregation of spikes weighted by their temporal code value



32 Example Algorithms on Neuromorphic
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Nature: Machine Intelligence, In Press.



33 Context-Sensitive Deep Learning

• Provide a network with the flexibility to
perform different tasks without
reprogramming

• Neuromodulation: The idea that diffuse,
network-wide inputs can adjust behavior

• Contextual information is fed into network
through a parallel pathway

• Context neuromodulation provides a biasing
effect on downstream neurons

• Current capabilities:
• Superclass exclusion: lower-level

characteristics that are dependent on higher-
level abstractions

• Context-dependent function: ability of a
singular network to incorporate multiple
behaviors

Image

Function

or

Superclass

Convolution Layers
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1 I
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Class
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Lower-level characteristics that are dependent on higher-level abstractions

Superclass
Context

vow

Input

Extraction

• P -
Better Predictions

0 90

2
0.85

O

LL

0.83

Images: CIFAR100 and FashionMNIST
Variable Context Accuracy and
Resulting Network Performance

- CIFAR-100

- FaShiOri MNIST

0 70

0 51

0.60 0.65 070 0.75 0.80 0.85 0.90 0.95 l 08

Context Accuracy

Fa
sh
io
n 
M
N
I
S
T
 

Aquatic
Mammals

Fish

Flowers

Sample images & classes

Natillig111
Beaver Otter Beaver Seal Dolphin

112111VP9111
Trout Acig&V,T, Trout Ray Shark

Poppy Tulip Orchid Tulip Rose

Tops

Bottoms

Other

Shirt Shirt Coat T-Shirt Shirt

MIT
Trouser Dress Trouser Dress Trouser

A
Sandal Bag Sneaker Bag

00

Text: 20 Newsgroups

Metric\Context

Accuracy (Top 1)

Accuracy (Top 3)

Fl -score

Control

.505

.757

.482

Direct Learned

.689 .549

.935 .779

.668 .536

Control

(No Context)
Direct

(Provided Context)

r

• E
r.

Learned
(Inferred Context)

■

N
E
N
E



35 Context-dependent function

Ability of a singular network to incorporate multiple behaviors
class 5
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37  Programming and Performance of Neuromorphic Hardware
# Neurons

• There are many different emerging
neuromorphic architectures

• Design tradeoffs focus upon different
features making them better suited for
different applications

• Architectural differences result in
performance differences for different tasks

• Bottom figure shows benchmark results
across a suite of architectures on an
inferencing task comparing throughput
with power consumption

• Seeing great promise in terms of
performance per watt from emerging
neuromorphic architectures

• Such approaches are an enabler for
performing AI tasks in SWaP constrained
envirnnments
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Thank you for your time

Questions?

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International, inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.


