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Motivation-Moore’s Law

As Transistor Count Increases, Clock Speed Levels Off
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of two per year. Certainly over the short
term this rate can be expected to
continue, if not to increase 1,000
Revision: 1975: Semiconductor
complexity would continue to double
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David House, an Intel colleague, perpetuated the misconception of Moore’s Law with
performance doubles every 18 months.

Self-fulfilling prophecy, an industry driver.




Dennard Scaling

= Why haven’t clock speeds increased, even though transistors
have continued to shrink?

" P = fCVZ + Vlleakage
= Capacitance falls with feature size

= as the size of the transistors shrink, and the voltage reduced,
circuits can operate at higher frequencies at the same power

= As transistors get smaller, power density increases because
these don’t scale with size

= This created a “Power Wall” that has limited practical
processor frequency to around 4 GHz since 2006 (65nm node)

= There is a general industry consensus that the laws of
Dennard scaling broke down somewhere between 2005-2007
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The Singularity is Nigh!

= |n 2005, author Ray Kurzweil published The Singularity Is
Near: When Humans Transcend Biology

= Based on “Moore’s Law” artificial computation will surpass
the human brain by ~2045.

= |n "The Singularity Myth," physicist Theodore Modis
illustrates that in countless real world examples, growth
actually follows a logistic "S-curve.”, which initially appears to
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= ~2016 industry shifted from using semiconductor scaling as a
driver to more of a focus on meeting the needs of major
computing applications. GPU please...




Different Computing Paradigm

Over last decade, different
aspects of Moore’s Law
have stalled

Last decade has seen
emphasis on software, but
new hardware paradigms
are being sought

Neural networks

= Biological neural networks
operate in parallel

= Very low energy
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Brain Inspired Computing

Scientist’s or
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Neural computation and artificial neural
networks are not the same

Neuroscience Hebb Dan & Poo; Markram {STDP) synapto- and neuro-genesis
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Neural computing at Sandia Labs
leverages a large research foundation

Neural Theory
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Hardware Acceleration of Adaptive Neural
Algorithms (HAANA)
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" |nspirations from neurobiology

= Low computational power (femtojoules)

Large population of neurons (10%°)

Real time learning
High degree of fan-in (10%)
Temporally coded information

= Manifestations of neurobiological-inspired hardware tend to
deviate from the original inspirations due to constraints in
= Device physics
= Fabrication technologies
= Readily available hardware

= |t’s difficult to get everything in one
package




The Spiking Temporal Processing Unit (STPU) &5
Overview

= A spiking neuromorphic research architecture
= Scalable and highly parallel
= Prioritizes temporal and spatial complexity of spiking neural systems
= Supports high fidelity spike timing dynamics

= Simple Leaky Integrate and Fire (LIF) [Ssec.

neuron model with 3 parameters e o
= Spiking threshold
= Minimum neuron potential STPU |
Spike Transfer Structure
a Lea k rate DMA Control and Status Module g Output Spike
Controller Consolidator

Wi T
euronal Processing Units

= Temporal buffer for synaptic delays l L|*"”'F°‘Buffers

= Supports arbitrarily connected
networks with configurable weights
and delays per synapse

Synapse Memory




Synapse Memory

Large off chip memory Synapse Memory
Contains all synaptic information Pre Synaptic Neuron

= Pre-synaptic neuron designator Synaptic Weight

= Synaptic weight =

= Synaptic delay (temporal offset)
= Post-synaptic neuron designator

Enough memory to support fully connected topologies
Unique weights and delays per synapse

Online/Real-time updating allowed




Spike Transfer Structure
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Neuronal Processing Unit
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Structure
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. . o —
Neuronal Computation Dynamics )=

SYNAPTIC INPUT UPDATE

Ra(t) = Raz(t) + Y ik(t)Wa,5,k(t) ()
&
TEMPORAL INTEGRATION
Rz,;(t+1)= Rz, ;(t)
Rp_1(t+1)=0 2)
Aj = A;(t) + Ro;(t)
where d € {0,---,D —2}.

THRESHOLD, FIRE, RESET
A(A;) ifA; <T;
AJ(t+1): ( .7) 1 _J< 7
0 if A; > T; — SPIKE (3)
A(4y) = A;(1 =)
where A;(0) = 0. Note that A;(t 4 1) is the value of the in-
tegration register after a complete LIFop has been performed,

T; is the threshold to fire value of the j™ neuron, and \ is the
leakage value.




Output Spike Consolidation

= Three-stage consolidator

Stage 1 Stage 2 Stage 1
7 1 3
Stage 1 Stage 1 Stage 1
6 5 4

Stage il Stage 1 Stage 1
(0] il

Stage 1 Stage 2
7/ 2

Stage 1

= Pipelined efficiency

= Each stage operatesin
parallel

= Number of stage 1, 2, and 3
consolidators is a parameter

= Number of stages is a
parameter
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Hardware Development Environment

= Current implementation on a Nallatech 385A

= 8-lane PCle 3.0 card
= Intel® Arria® 10 GX 1150 FPGA
= Two 4GB banks of DDR3L SDRAM @ 2133 MT/s

= 2048 Instantiated neurons (4096 max)
= 32 deep temporal buffer (64 max)
= 16 parallel computation paths

16MB of Synapse Memory
= 18 bits per synaptic weight

A Nallatech
385A

= 6 bits per synaptic delay
= 8 bits for post-synaptic neuron
= 2048X%2048 total synapses
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Neurons to Algorithms

= A language for modeling neural systems
= Object-oriented modeling — seamless scaling

= Declarative language, not procedural

= Neural components (parts) are bundles of equations and parameters
= Parts are inheritable and extendable

= Backend designed for the STPU
= Translates N2A models to configuration information for the FPGA
= Utilizes a user space library to send the configuration data
= Executes the algorithm, loads input data, and receives output data

Algorithm » Network Model
Neural Compiler
o] STPU Backend k Deylce 5 J STPUFPGA
Driver Hardware




Liquid State Machine (LSM)

= Algorithm for learning from sequential
(or temporal) data

= Randomly connected spiking neurons
encode complex temporal dynamics

= Temporal dynamics map well to the
STPU architecture
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Synaptic Response Functions
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Effects of Parameter Selection and Synaptic
Response Function

Linear Model 3X3X15 [ 5X5X5 | 4X5X10 [ 2X2X 20
0;=15 | 6;=11 | ;=15 6; =10

Linear SVM 0.906 0.900 0.900 0.914

LDA 0.921 0.922 0.922 0.946

Ridge Regress 0.745 0.717 0.717 0.897

Logistic Regress 0.431 0.254 0.254 0.815
Synaptic Response | Train Sep | Train Rate | Test Sep | Test Rate SVM
Dirac Delta 0.129 0.931 0.139 0.931 0.650
First-Order 0.251 0.845 0.277 0.845 0.797
Second-Order 0.263 0.261 0.290 0.255 0.868
First-Order 30 0.352 0.689 0.389 0.688 0.811
First-Order 40 0.293 0.314 0.337 0.314 0.817
First-Order 50 0.129 0.138 0.134 0.138 0.725

Red indicates the best values for default parameters

Blue indicates values that improved over second-order




STPU Results of LSM
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Porting Algorithms to Neuromorphic Platforms

¢ Classical algorithms are tried-and-tested

* Neuromorphic platforms must meet and exceed
classical results

* Neuromorphic has been cornered into learning
based algorithms only

* View neurons as highly parallel and simple
processots
* Min, Max, Sorting, Optimization, and Filtering
* Matrix multiplication

* Cross-correlation with application to Particle Image
Velocimetry

* Random Walk with application to the diffusion
equation

*Whetstone: A general ANN to SNN conversion
tool

* A process for training binary, threshold-activation
SNNs using existing deep learning methods

* Conversion introduces minimal loss in accuracy.




Particle Image Velocimetry

Method for using particles in imagery to
determine the local velocity flow

Underlining kernel: Cross-Correlation
= Compute Argmax (f x g)(n) = Y., f(n)g(m + n)
With the temporally coded algorithm

= 13X 13 - 1767 neurons with 32 deep
temporal buffer
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W. Severa, O. Parekh, K. D. Carlson, C. D. James,
and J. B. Aimone, “Spiking network algorithms for
scientific computing,”in Rebooting Computing
(ICRC), IEEE International Conference on. IEEE,
2016, pp. 1-8.
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‘ And more...

PIV Base Video 2 PIV Results Video 2
Circular Flow (Clockwise) Circular Flow (Clockwise)
Sandia National Laboratories is a multimission laboratory managed and operated by Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC, a wholly owned National Technology and Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc_, for the U.S. Department of Energy's National subsidiary of Honeywell International, Inc, for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-NA0003525. Nuclear Security Administration under contract DE-NA0003525.
@tkERey NISA (ORD. @tiERey NISA ORD.

Performance Results

Case: Seventy five (75) 640x480 image frames with 32x32 input tiles
® 300 tiles perimage, 74 image compares, 22,200 algorithm executions,
1 execution requires 4994 ticks

mm Actual’/ Overhead® | Overclocked / Overhead?®

Serial 1 30.8 hrs. 31.8 hrs. / 88.7 hrs. 2.8 hrs." /59.5 hrs.
Parallel 1 5 6.2 hrs. 6.4 hrs. /33.9 hrs. 0.6 hrs." /27.6 hrs.
Parallel 16 89 20.8 min. 21.0 min. / 4.7 hrs. 4.4 min.* /4.6 hrs.
Parallel 16 110 16.8 min. -/- -/-

"1 tick = 1ms | ™1 tick = Sus | *1 tick = 200us | °Includes 1/O
Reported data is based on a small sample average and extrapolated.




Spike Optimization

= Implement fundamental mathematical
operations through temporal coding
= SpikingSort
= SpikeMin, SpikeMax, SpikingMedian
= SpikeOpt(median)

* Implemented on the STPU hardware

Algorithm Tp P cost=Tp X P

SpikingSort o(k) O(N) O(kN)

SpikeMax 0o(k) O(N) O(kN)

SpikingMedian o(k) O(N) O(kN)

SpikeOpt (median), worst case 0(N/2) O(N) O(N?) Spike Optimization
o (e, 5 e e e 0(1) O(N) 0(N) Verzi, Stephen J., et al. “Optimization-

based computation with spiking

neurons,” Neural Networks (IJCNN),
2017 International Joint Conference on.
IEEE, 2017.




STPU Results of Temporal Coding

Aggregation of spikes weighted by their temporal code value




2 I Example Algorithms on Neuromorphic
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331 Context-Sensitive Deep Learning

* Provide a network with the flexibility to
perform different tasks without
reprogramming

* Neuromodulation: The idea that diffuse,
network-wide inputs can adjust behavior
* Contextual information is fed into network

through a parallel pathway

¢ Context neuromodulation provides a biasing
effect on downstream neurons

* Current capabilities:

* Superclass exclusion: lower-level
characteristics that are dependent on higher-
level abstractions

¢ Context-dependent function: ability of a
singular network to incorporate multiple
behaviors
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34 I Superclass Exclusion

Lower-level characteristics that are dependent on higher-level abstractions

Images: CIFAR100 and FashionMNIST
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35 1 Context-dependent function

Ability of a singular network to incorporate multiple behaviors
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3 I Neuromorphic Hardware

>
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* There are many different emerging
neuromorphic architectures
* Design tradeoffs focus upon different

teatures making them better suited for
different applications

* Architectural differences result in
performance differences for different tasks

* Bottom figure shows benchmark results
across a suite of architectures on an
inferencing task comparing throughput
with power consumption

* Seeing great promise in terms of
performance per watt from emerging
neuromorphic architectures

* Such approaches are an enabler for
performing Al tasks in SWaP constrained

environments I} | I
é—« l"Wd &)
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Questions?
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