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‘ Motivations

e Fluid injection or withdrawal causes changes in .
Induced (human-caused) seismicity

Changes in solid stress

{ 1 - 1 1 due to fluid extraction or injection
hydraulic fracturing, fault (re-)activation, and/or oo flid scirenton o fs
Direct fluid pressure changes in gravitational loading)

fluid saturation changes offacts cfinfaction P Ahy

(fluid pressure
diffusion) Permeable
reservoir/aquifer

B0

S Volume and/or mass change ™

pore pressure, resulting in stress variations,

e Methodology to reduce risks of induced seismicity
and improve modern energy activities in the

® S % | Increase in pore
SU.b Surface . B/ pressure algng
. ) ) . ' fqult (requires_ k Change in loading
° Disposal of water associated with energy extraction Lormeable ey o

aquifer connection required)

(e.g., oil and gas)
> Geothermal energy production

USGS: http://earthquake.usgs.gov/Research/induced/modeling.php

° Subsurface carbon storage

= New groundwork for remote characterization of rock failure by
identifying the precursors to the induced seismicity in fractured systems




Linkage between geomechanical and geophysical
s | processes in mechanical discontinuities

Precursor(s) to the induced seismicity from
existing fault/fracture systems - linking
mechanical discontinuities, fracture mechanics,
pore pressures and stress to the geophysical
signatures is key, yet remains elusive as a result
of the heterogeneity (uncertainty) and resulting
scale dependence

Changes in the spectral contents of waveforms
are likely due to wave propagation + faulting
processes - initiation, propagation and
coalescence of pre-existing discontinuities
loaded in mixed mode I-lI-lI
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Precursors to Slip along a Mechanical
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» Post pre-peak seismic response depends on the
frictional characteristics of the interface

Bi-axial testing
(Hedayat et al, 2014)

Need to determine how these results apply in a more realistic setting with spatial
and temporal variations in pre-existing discontinuities, stress and pressure fields,
fluid migration and rock types




Integrated approach for geomechanical and =
"lgeophysical measurements @

3PB experiments and simulations
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»| Fracture surface — Flow anisotropy (3D printed)

Load-Displacement Behavior

1.2
I Gypsum
il
'c -
© L
S L
~ 08¢ i
© B
q) -
o L
- 06
[} L
N H
T L
E 04
- I
z [
0.2 j
ol
Gypsum H VWV V  Valt Halt VValt
Sample
Short Traverse (V) _ %/<\\ N\
~5% Contact /\ \\ S
5 ' J
3 100 pr—rrr e (
© E
C - -
Q
e. L U \\
e 0%
Q9 E
©
©
a
- 1
Q.
2
©
2 I
& 015
2> i
3
3
g 0.01
o Gypsum H VWV V  Valt Halt VValt

Sample




10

Motivations

Linkage between geomechanical and geophysical
processes at laboratory scale

Machine learning applications at laboratory
scale

Machine learning applications at field scale




Earthquake Forecasting On Lab Scale Induced _
« | Seismic Events e ()

velocity

constant
stress

* Kaggle: LANL Earthquake Prediction

Use setsmic signals (acoustic emissions) to predict the - A
time remaining for the next earthquake to happen D1 b1 Roustleducetal
granular layers (2017, GRL)

* Experimental data: Double direct shear geometry subjected to bi-axial loading
Aperiodic cycles of stick and slip (loading & failure)

* Training data: Continuous data containing 16 earthquakes
* Testing data: Random earthquake cycle segments of 150,000 data-points

* Approach: Preprocess-> Feature Extraction-> Training->Predictions

Trends of acoustic_data and time_to_failure

| Continuous waveflorm Time to failure et

acoustic data
e

—

time ko failure

Training
‘ ‘ sample data
oo | : : . . : ° file plotted.

Time




12‘ Features & Prediction

* Characterize the signal through various measurements

* Features are easily comparable to other signal’s features (reduce overfitting)

7~ Mean STA/LTA Maximum "\
Standard deviation Correlation Zero Crossing
= Change rate Kurtosis Number of peaks
F — Percentile Skew Medians
Quantiles Energy Sum
Trend regression  Mel-frequencies  Autocorrelation
\FFT Minimum Difference j

* Data analysis method in which computers learn and autonomously build models based on data patterns.
* Decision trees
Random Forest, Boosting trees (LightGBM)

* Support Vectors:

Support Vector Regressor (SVR) Submissions | CV mean | STD | Public Score | Private Score
Kernel Ridge Regression (KRR) LGB 2.0543 | 0.1198 1.62295 2.65173
«  Neural Networks XGB 20715 | 0.1196 | 1.55728 2.64105
KRR 2.0906 0.1078 1.56615 2.52527

Artificial Neural Networks (ANN)
Short-Long Term Memmory (LSTM)

COflVOlU.tiOfl’dl Neural NCtWOI'k (CNN) https://www.kaggle.com/c/LANL-Earthquake-Prediction/overview

Blend KRR XGB — — 1.53121 2.56981
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.| Microseismic Data at IBDP lff

 Raw & processed data (e.g. Will e
et al., IJGGC 2016) S ot R

— Data acquisition at Injection,

I

monitoring, and verification Raw data from multichannel acquisition
wells B “ | | 4 | 1
— Data analysis for event &L ( l W
detection and location Short/long term average function o
. Various filters, STL/LTA,  ==nf 0 ., =p
and spectral analysis -
applied

Event waveform
Will et al., IJGGC 2016

— Velocity model and MS
clustering




‘ ML Approaches

Supervised ML: Convolutional neural network (CNN) for
event detection and location
— Open source ConvNetQuake (Perol et al., 2018)
e Processed data from ISGS will be used to train models
e Trained model will be used to validate again the remaining
dataset to develop real-time recognition of events and locations
Unsupervised ML: Waveform similarity-based event
detection methods
— Fingerprint and Similarity Thresholding (FAST, Stanford FAST group)

* FAST shows the increase in event detection of low magnitude
seismicity by > a factor of 10

e High efficiency in big data processing time
Template matching (EQcorrscan)
— This is a refence case whose results will be compared with
ConvNetQuake and FAST for efficiency and interpretability
Characterization of Microseismic events

— Spectral clustering and regression-based machine learning analysis
(e.g. random forest)

e |dentify seismic phases from successive slip or fracturing stage
events and their constitutive wave patterns

e Extract the salient features present in the data set, such as
individual wave types, spectral content, p-s converted waves, and
local energy decay

¢ Link microseismic data to other measured/simulated quantities
(e.g., injection, pressure and stress field)
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New approach:

Computational efficiency
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Earthquake detection methods from

C.E. Yoon et al. (SciAdv 2015)




FAST Approach

gk time series segments binary fingerprints sparse similarity matrix Output
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ML Applications for Event Detection &
Fault System Configulation

e Develop and apply ML/deep learning methods

Improve identification of precursors to induced
seismicity
Improve the detection of unidentified events &

locations to discover undetected/hidden
fault/fracture systems

Rapid recognition of the presence of faults/fault
interactions

Characterize microseismic waveforms, the relations
among the events, and reliable identification of
microseismic sources integrated with
forward/inverse modeling







