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■ Motivations

■ Linkage between geomechanical and
geophysical processes at laboratory scale

■ Machine learning applications at laboratory scale

■ Machine learning applications at field scale



4 Motivations

• Fluid injection or withdrawal causes changes in

pore pressure, resulting in stress variations,

hydraulic fracturing, fault (re-)activation, and/or

fluid saturation changes

• Methodology to reduce risks of induced seismicity
and improve modern energy activities in the

subsurface:

• Disposal of water associated with energy extraction
(e.g., oil and gas)

• Geothermal energy production

• Subsurface carbon storage
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USGS: http://earthquake.usgs.gov/Research/induced/modeling.php

■ New groundwork for remote characterization of rock failure by
identifying the precursors to the induced seismicity in fractured systems



Linkage between geomechanical and geophysical
5 processes in mechanical discontinuities

• Precursor(s) to the induced seismicity from
existing fault/fracture systems - linking
mechanical discontinuities, fracture mechanics,
pore pressures and stress to the geophysical
signatures is key, yet remains elusive as a result
of the heterogeneity (uncertainty) and resulting
scale dependence

• Changes in the spectral contents of waveforms
are likely due to wave propagation + faulting
processes - initiation, propagation and
coalescence of pre-existing discontinuities
loaded in mixed mode I-11-111

/4
Contact
Area

Fluid Flow

Aperture

N. ./I
Fracture Stiffness

1

Seisrnic Attenuation
& Velocity

Courtesy from Pyrak-Nolte

Fracture
mechanisms
in geothermal
reservoirs

Shear

Thermal

Mode I Mode 11 Mode 111
Holtzman et al. Sci Adv 2018



Precursors to Slip along a Mechanical
6 Discontinuity
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► Increase in transmitted shear wave amplitude prior to
achieving the peak shear stress
► Post pre-peak seismic response depends on the

frictional characteristics of the interface

Need to determine how these results apply in a more realistic setting with spatial
and temporal variations in pre-existing discontinuities, stress and pressure fields,
fluid migration and rock types
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'Integrated approach for geomechanical and
7 geophysical measurements
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91 Fracture surface — Flow anisotropy (3D printed)
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■ Motivations

■ Linkage between geomechanical and geophysical
processes at laboratory scale

■ Machine learning applications at laboratory
scale

■ Machine learning applications at field scale



Earthquake Forecasting On Lab Scale Induced
S e i s m i c Events 1 c`:,:ctaz,

• Kaggle: LANL Earthquake Prediction
Use seismic signals (acoustic emissions) to predict the
time remaining for the next earthquake to happen m

con slant
stress

Rouet-Leduc et al.

granular layers (2017, GRL)

• Experimental data: Double direct shear geometry subjected to bi-axial loading

Aperiodic cycles of stick and slip (loading & failure)

• Training data: Continuous data containing 16 earthquakes

• Testing data: Random earthquake cycle segments of 150,000 data-points

• Approach: Preprocess-> Feature Extraction-> Training->Predictions
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12 1 Features & Prediction
• Characterize the signal through various measurements
• Features are easily comparable to other signal's features (reduce overfitting)
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• Data analysis method in which computers learn and autonomously build

• Decision trees

Random Forest, Boosting trees (LightGBM)

• Support Vectors:

1.413 Features lavg over foil.

100 11S

models based on data patterns.

Support Vector Regressor (SVR) Submissions CV mean STD Public Score Private Score

Kernel Ridge Regression (KRR) LGB 2.0543 0.1198 1.62295 2.65173

• Neural Networks XGB 2.0715 0.1196 1.55728 2.64105

Artificial Neural Networks (ANN) KRR
Blend KRR XGB

2.0906 0 1078 1.56615
1.53121

2.52527
2.56981

Short-Long Term Memmory (LSTM)

Convolutional Neural Network (CNN) https: / /www. kaggle.com / c/ LANL-Earthquake- Prediction /overview
1
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■ Motivations

■ Linkage between geomechanical and geophysical
processes at laboratory scale

■ Machine learning applications at laboratory scale

■ Machine learning applications at field scale



151 Microseismic Data at IBDP

• Raw & processed data (e.g. Will
et al., IJGGC 2016)

— Data acquisition at Injection,
monitoring, and verification
wells

— Data analysis for event
detection and location

• Various filters, STL/LTA,
and spectral analysis
applied

— Velocity model and MS
clustering

-600 -400 -200 200 400 600 100 1000

EMT 2 5 6

7. Y

9113_2_11

MT 1 I 2 3
X Y
0031.12

Raw data from multichannel acquisitio
200 400 *00 0041

NET 2

arm
x Y
xxl_l_X

- oo 200 1000

3.22

34, —

s fooron1

Short/long term average function
900 950 1000 1050 1100 1150 1200 1250 1300

SET 35 97 95 96 
—2 XYZxY ps

1.4V2 VZ1
P TD25.0
S 1178.2

-227.

Event waveform

Will et al., IJGGC 2016



1 ML Approaches
• Supervised ML: Convolutional neural network (CNN) for

event detection and location
- Open source ConvNetQuake (Perol et al., 2018)

• Processed data from ISGS will be used to train models

• Trained model will be used to validate again the remaining
dataset to develop real-time recognition of events and locations

• Unsupervised ML: Waveform similarity-based event
detection methods
- Fingerprint and Similarity Thresholding (FAST, Stanford FAST group)

• FAST shows the increase in event detection of low magnitude
seismicity by > a factor of 10

• High efficiency in big data processing time

• Template matching (EQcorrscan)
— This is a refence case whose results will be compared with

ConvNetQuake and FAST for efficiency and interpretability

• Characterization of Microseismic events
- Spectral clustering and regression-based machine learning analysis

(e.g. random forest)

• Identify seismic phases from successive slip or fracturing stage
events and their constitutive wave patterns

• Extract the salient features present in the data set, such as
individual wave types, spectral content, p-s converted waves, and
local energy decay

• Link microseismic data to other measured/simulated quantities
(e.g., injection, pressure and stress field)
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Earthquake detection methods from
C.E. Yoon et al. (SciAdv 2015)



1 FAST Approach
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1 ML Applications for Event Detection &Fault System Configulation

• Develop and apply ML/deep learning methods

Improve identification of precursors to induced
seismicity

Improve the detection of unidentified events ec.
locations to discover undetected/hidden
fault/fracture systems

Rapid recognition of the presence of faults/fault
interactions

Characterize microseismic waveforms, the relations
among the events, and reliable identification of
microseismic sources integrated with
forward/inverse modeling
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