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i Introductory slide @)

* Earthquake forecasting studies: when, where, and
how large.

* Kaggle: LANL Earthquake Prediction

LANL initial work:
Machine Learning Predicts Laboratory Earthquakes|1]

Use seismic signals (acoustic emissions), to predict the
time remaining for the next earthquake to happen.

* Research Questions:
What hidden signals preceding the earthquake

onset that may help  predict the event?
What architecture of machine learning regressor
1s most suitable for this type of problem?




: Data & Methodology @)
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Double direct shear geometry subjected to bi-axial loading.
Aperiodic cycles of stick and slip (loading & failure). =
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Training data: Continuous data containing 16 earthquakes.

Data experimental setup [2]

Testing data: Random earthquake cycle segments of 150,000 data-points

Approach: Preprocess-> Feature Extraction-> Training->Predictions
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: Pre-process (

e Data correction:

Add normal distribution noise
Subtract the median

* Digital Filtering:
IIR Butterworth filter

sag_ 00030f
* Data segmentation: "
Segment training data into 150,000 points windows “
Each window is assigned a ‘time to failure’ (target) T 30 a0 35 B0
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Sample test files.
https:/ /www.kaggle.com/artgor/earthqua
kes-fe-more-features-and-samples




Signal Features

* Characterize the signal through various measurements

* Features are easily comparable to other signal’s features (reduce
overfitting)
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Features Correlation

Accuracy improved!
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Feature Importance (LightGBM)
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i0 Forecast Machine Learning @

Data analysis method in which computers learn and autonomously build
models based on data patterns.
Decision trees

Random Forest
Boosting trees: Light GBM, XGBoost, CatBoost

Support Vectors:

Support Vector Regressor (SVR) T_I_Tl:‘? ’Y_—, -
Kernel Ridge Regression (KRR) |

Neural Networks

Artificial Neural Networks (ANN) 1
Short-Long Term Memmory (LSTM)
Convolutional Neural Network (CNN)

.
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i Decision Trees: Boosting Algorithms l;

Boosting algorithms uses gradient boosting
framework at its core. The default base
learners are decision tree ensembles.
. . * ®
XGBoost grows horizontal (Level-Wise) com) o o m -

decision trees. ® 00 o

Level-wise tree growth

LightGBM grows Leaf-Wise decision trees. @ ® ®
oo o) ¢ o .
® 0 o0
CatBoost uses a complex categorical boosting ntaeeimmommity T
algorithm which is beyond this scope. i .




Support Vector Regressor (SVR) & @
Kernel Ridge Regression (KRR)

Support vector machine(SVM) algorithms can be modified for regression
analysis, known as SVR.

Kernel ridge regression (KRR) [M2012] combines Ridge Regression
(linear least squares with 12-norm regularization) with the kernel trick.
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Ditferent loss functions are used: KRR uses squared error loss while
support vector regression uses e-insensitive loss, both combined with 12
regularization.

SVR versus Kernel Ridge

) —— SVR (fit: 0.392s, predict: 0.071s)
-2 1 ® ® —— KRR (fit: 0.133s, predict: 0.090s)
Y [ ] @® SVR support vectors

e data

target
o

4 é é 7‘ é'3 é 1'0 data
Support Vector machine learning, https://scikit- KRR and SVR comparison. https://scikit-
learn.org/stable/modules/svm.html#svm-regression learn.org/stable/modules/kernel_ridge.html




i3 Neural Networks (NN) @)

Inspired in the behavior of animal’s neurons communication. Each layer
thresholds the information to the next node using specific activation
functions.

NN consists of various layers: 1 input, N hidden layers, 1 output layer
Long-short term memory(LSTM) nodes: Cell state, forget gate, input gate,
tanh layer

Convolutional Neural Network (CNN): not covered here

Artificial Neural Network(ANN)

(1) Height <z T\ - T\ T
(2) Width @&F7 AN 5 @ AR
(3) Stress xx R/ \ &
(4) Stress xy @CER : )O 0 = Fault ruptured A ® ® A
(5) Stress yy : ¢ 1 = Fault did not 5 L9 Ly
(6) Dynamic friction S 7 Tupture J ~

7 | |
P ‘:,\ 7 & ®) &

LSTM nodes model. https://colah.github.io/posts/2015-08-
Example Neural Network. arXiv:1906.06250 [physics.geo-ph] Understanding-LSTMs/
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y ‘ Prediction (

Output corresponds to estimated predictions of time to failure for each
of the testing data

Accuracy of the global predictions is given by mean average error (MAE)

Lower score is better
1 n
MAE = =3 |y; — 9;
n ;i — 9yl

Most models received and MAE score between ~2.3 (winner) and ~2.7

time to failure
seg id
seg @@a36T 3.421894
seg @@12h5 5.758089
seg @@184e 7.369895
seg B83339 9.946596
seg Bedlcc §.786591

Example submission file contents.




- ‘ Submission Evaluation

*Blend= averaged prediction i

1) All features (64) Submissions | CV mean | STD | Public Score | Private Score
LGB 2.0746 | 0.0924 1.52744 2.66190
XGB 2.0988 | 0.0921 1.5311 2.67000

Blended 1.51931 2.65868

. Submissions | CV mean | STD | Public Score | Private Score
2)20d place winner features g

2.1054 0.0955 1.58427 2.70104
XGB 2.1225 0.0932 1.56686 ‘ 2.70317
Blended 1.56699 2.69513

3)1St and 2nd place features Submissions | CV mean | STD | Public Score | Private Score

LGB 2.0543 0.1198 1.62295 2.65173
XGB 2.0715 0.1196 1.55728 2.64105
KRR 2.0906 0.1078 1.56615 215252
Blend KRR XGB o —_— 1.53121 2.56981

4)Top features from
15t and 2nd Submissions | CV mean | STD | Public Score | Private Score

KRR | 20560 | 0.1142 | 152040 | 252111




i Discussion

* Features
* None significant feature like min and max reduce score significantly. Should
include only the top relevant.
* More features doesn’t mean better. Only keep top ones.

e Models

* More training slightly increase prediction accuracy.

* Using samples with the broader time range generalize better.

* Averaging predictions results in better score most of the time.

* Less tuning parameter regressors like SVR generalize better than the LGB.

* Results
* Predictions of time to failure over 10 seconds long can be made with just an
average error of 2.5 seconds

¥ = .
\m '




i7 Conclusions @

* Several signal characteristics preceding an earthquake proved usetul to
accurately estimate its arrival over 10 seconds prior.

* Developing such an accurate model requires extensive fine tuning in
exploring characteristics and tuning the predictor. (problem specific)

* Similar approach may be applied to solve other researches of interest
(material fault, avalanche, land slides, health, BCI, etc.)
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CatBoost

CatBoost has the flexibility of giving indices of categorical columns so that it can be
encoded as one-hot encoding using one_hot_max_size (Use one-hot encoding for all
features with number of different values less than or equal to the given parameter value).

If you don’t pass any anything in cat_features argument, CatBoost will treat all the
columns as numerical variables.

For remaining categorical columns which have unique number of categories greater than
one_hot_max_size, CatBoost uses an efficient method of encoding which is similar to
mean encoding but reduces overfitting. The process goes like this—

° Permuting the set of input observations in a random order. Multiple random permutations are
generated

> Converting the label value from a floating point or category to an integer

> All categorical feature values are transformed to numeric values using the following formula:

countInClass + prior
totalCount + 1

avg target =




»| Top Solution @

Add normal distribution noise.

Subtract the median

21 teatures for NN, and 6 features for Lightgbm

Note: tested out the features using p-values

Only used training samples from the longest 10 sequences

3 folds training repeated: 10 times for Lightgbm and 8 for NN

> Discarted bad scoring CV resultant models.

> NN consists of LSTM (128), conv(128), conv(84), conv(64), dense (64), dense(32),
dense(1) and 3 loss parameters (I'TE, TSE, Binary TTT)

MAE for both predictors was good, but averaged prediction score was
better.




