
Machine Learning Based
Analysis Of Acoustic Emissions
During Induced Seismicity

Rachel Willis — University of North Carolina,
Wilmington

Hongkyu Yoon — Org. 8864

PRESENTED BY

2019 Summer Student Symposium

This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories.

Sandia
National
Laboratories

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energys National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-8557PE



2 1 Outline

1. Introduction

2. Experimental Setup

3. Acoustic Data

4. Machine Learning Setup

5. Machine Learning Analysis

6. Complications

7. What's Next??



3 1 Personal Background

• B.S. in Physics and B.S. in Mathematics and Statistics.
• M.S. in Mathematics.
• Summer 2018: NSF Funded REU at UNM

- Gravimetric Study for Detecting Subsurface Density

Structures Beneath Volcanoes
• 2018 — 2019: Honors Thesis

- Applications of Spherical Harmonics for

Elastogravitational Deformations of the Earth
• PhD in Physics or Geophysics



4 Introduction
We are using machine learning methods to analyze the acoustic
emissions of induced seismicity. Acoustic/Seismic precursors I

may be used to predict fault failure.

Background

Seismic forecasting focuses on 3 key points: when,
where, and how large.

Advances in instrumentation resulted in new discoveries
of slip processes.

Acoustic/seismic precursors to failure in materials.

Precursors may exists in most if not all seismic events

1



5 Experimental Setup

• Six F15a sensors from

Physical Acoustics

(Channels)

• 200-400 kHz filter to

get rid of noise

Cast Sample
C22, C33, & C23

H Sample
dCH1, dCH2, & dCH3
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8 1 Machine Learning Setup

We apply different machine learning features to find
patterns or precursors to predict failure.

• Load one set of data.
• Assign each sensor a different color.

 J

• Apply and analyze basic features.
• Ave, Std, Skew, Kurtosis, & Energy.

• Apply and analyze complex features.
• mfcc mean4, mfcc mean18,

percentile_ro1150_std_20, & trend_error  }



9 Machine Learning Analysis -- Ave
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All averages are fairly close to zero. There are a few outliers present in each sample.

Possible significant events for C22 around 1300us and 1600us. Possible significant events

for C33 around 1200us and 1500us.



10 1 Machine Learning Analysis -- Std
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For all samples it seems that the standard deviation is increasing until failure. This means

the acoustic signal is changing more drastically as we get closer to failure which is

expected. Some filtering may allow us to get a better representation.



Machine Learning Analysis -- Skew
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There is an upward trend present in all samples meaning as we approach failure there is

an increase in peaks so more events are recorded. Again there are outliers present in C22

and C23. The behaviors between Kurtosis and Skew seem to be similar.
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All samples have significant outliers present. All outliers
1200 1400

are from different channels. We
could infer that the energy is increasing towards failure. Note energy is the sum of

magnitudes squared.



14 1 Machine Learning Analysis

We can conclude the following from our analysis of the common machine

learning features:

Several significant outliers, need to filter.

Skew and kurtosis have a similar behaviors. —

I Possible significant events:

C22 1300 s & 1600 s;

C33 1200 s & 1500 s ;C23 1200 s.

r
Best performing features: skew &
kurtosis.
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Mfcc represents filterbanks for energies and frequencies. This is targeting low frequencies.

When a significant event occurs the data points either jump above or below the mean.

1800
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Machine Learning Analysis
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In this mfcc we are targeting higher frequencies and it appears to be less stable than the

lower frequency mfcc. This could be due to the large amount of noise present in the data

and acoustic propagations.
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There is somewhat of an upward trend present in all samples; however, there are very

significant outliers present as well.
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Again there are outliers present that need to be filtered out. C22 shows a lot of trend
error towards the middle of the data which could be caused by noise or events.

1800



19 1 Machine Learning Analysis

We can conclude the following from our analysis of the complex machine

learning features:

Several significant outliers. li
r
mfcc_mean4 has a more stable distribution
that mfcc_meanl 8.

Possible significant events:

C22 1300 s & 1600 s;

C33 1200 s & 1500 s; C23 1200 s.

r
Best performing features: mfcc_mean4 &
mfcc_meanl 8.
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I
Complications

I

• Only analyzed Cast samples due to lack of data available for the H samples.

• There are 2 Cast samples in the 100-400kHz range and only one Cast sample

in the 20-1200kHz range.

• There are 6 signal channels; however, not all 6 channels are present in the

data files. i

• The Cast sample produces a lot of noise making it difficult to find significant
I

events.

• The outliers are in all files and for different channels.

• No visible pattern or definite precursors to failure.

1

1
1

I



21 1 What's Next???

• Apply EMD (Empirical Mode Decomposition) to filter out the noise.

• Add more features to find possible precursors.

• Look at specific sections of time.

• Apply ML Algorithms such as Kernel Ridge.
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