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; Introduction @
We are using machine learning methods to analyze the acoustic
emissions of induced seismicity. Acoustic/Seismic precursors
may be used to predict fault failure.

Background

Seismic forecasting focuses on 3 key points: when,
where, and how large.

Advances in instrumentation resulted in new discoveries
of slip processes.

Acoustic/seismic precursors to failure in materials.

Precursors may exists in most if not all seismic events
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Machine Learning Setup )
We apply different machine learning features to find
patterns or precursors to predict failure.

lL.oad one set of data.

1 * Assign each sensor a different color.
* Apply and analyze basic features.
2 * Ave, Std, Skew, Kurtosts, & Energy.

Apply and analyze complex features.

mfcc_mean4, mfcc_meanl8,
3. percentile_roll50_std_20, & trend_error
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All averages are fairly close to zero. There are a few outliers present in each sample.
Possible significant events for C22 around 1300us and 1600us. Possible significant events
for C33 around 1200us and 1500us.




i0 Machine Learning Analysis -- Std li,.
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For all samples 1t seems that the standard deviation 1s increasing until failure. This means

the acoustic signal is changing more drastically as we get closer to failure which 1s

expected. Some filtering may allow us to get a better representation.




i Machine Learning Analysis -- Skew @
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All samples show an increase in skewness leading up to failure which is what we would
expect. There are also outliers present in C22 and C33.




2‘ Machine Learning Analysis -- Kurtosis @®
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There 1s an upward trend present in all samples meaning as we approach failure there is
an increase in peaks so more events are recorded. Again there are outliers present in C22
and C23. The behaviors between Kurtosis and Skew seem to be similar.




i Machine Learning Analysis -- Energy @
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All samples have significant outliers present. All outliers are from different channels. We
could infer that the energy is increasing towards failure. Note energy is the sum of
magnitudes squared.




14‘ Machine Learning Analysis

We can conclude the following from our analysis of the common machine
learning features:
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Machine Learning Analysis
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Mifcc represents filterbanks for energies and frequencies. This is targeting low frequencies.
When a significant event occurs the data points either jump above or below the mean.




Machine Learning Analysis &®
mfcc_meanl8
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In this mfcc we are targeting higher frequencies and it appears to be less stable than the
lower frequency mfcc. This could be due to the large amount of noise present in the data
and acoustic propagations.




Machine Learning Analysis @
percentile_roll50_std_20
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There is somewhat of an upward trend present in all samples; however, there are very
significant outliers present as well.




Machine Learning Analysis &®
trend_error
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Again there are outliers present that need to be filtered out. C22 shows a lot of trend
error towards the middle of the data which could be caused by noise or events.




19‘ Machine Learning Analysis

We can conclude the following from our analysis of the complex machine
learning features:
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Complications (

Only analyzed Cast samples due to lack of data available for the H samples.
There are 2 Cast samples in the 100-400kHz range and only one Cast sample
in the 20-1200kHz range.

There are 6 signal channels; however, not all 6 channels are present in the
data files.

The Cast sample produces a lot of noise making it difficult to find significant
events.

The outliers are in all files and for different channels.

No visible pattern or definite precursors to failure.
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What’s Nextrr?

Apply EMD (Empirical Mode Decomposition) to filter out the noise.

Add more features to find possible precursors.
Look at specific sections of time.

Apply MLl Algorithms such as Kernel Ridge.

I"-—.w
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