
BasicLinearAlgebraSubprogram
fo r c++

• P1674r0: Evolving a Standard C++ Linear Algebra Library from the BLAS
• Extensive design justification and background for existing BLAS

• P1673R0: A free function linear algebra interface based on the BLAS
• The design proposal for BLAS functions in the C++ standard

This is not much talking about P1385R1: A proposal to add linear algebra support to the C++ standard library
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, inc., for the
U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

SAND2019-8470PE

Authors
•Mark Hoemmen (mhoemme@sandia.gov) (Sandia National Laboratories)
•David Hollman (dshollm@sandia.gov) (Sandia National Laboratories)
•Christian Trott (crtrott@sandia.gov) (Sandia National Laboratories)
•Daniel Sunderland (dsunder@sandia.gov) (Sandia National Laboratories)
•Nevin Liber (nliber@anl.gov) (Argonne National Laboratory)
•Siva Rajamanickam (srajama@sandia.gov) (Sandia National Laboratories)
•Li-Ta Lo (ollie©lanl.gov) (Los Alamos National Laboratory)
•Graham Lopez (lopezmg©ornl.gov) (Oak Ridge National Laboratories)
•Peter Caday (peter.caday@intel.com) (Intel)
•Sarah Knepper (sarah.knepper@intel.com) (Intel)
•Piotr Luszczek (luszczek@icl.utk.edu) (University of Tennessee)
•Timothy Costa (tcosta@nvidia.com) (NVIDIA)
Contributors
•Chip Freitag (chip.freitag@amd.com) (AMD)
•Bryce Lelbach (blelbach@nvidia.com) (NVIDIA)
•Srinath Vadlamani (Srinath.Vadlamani@arm.com) (ARM)
•Rene Vanoostrum (Rene.Vanoostrum@amd.com) (AMD)

Outline

• Why should BLAS be in the C++ standard?
• Existing practice?

• What are the issues with that practice?

• A proposal for function based BLAS
• General design principal.

• Analogy to std::algorithms

Why should BLAS be in the standard?
• C++ applications in "important application areas" (see
[P0939R0](http://wg2l.link/p0939r0)) have depended on linear algebra for a long time.

• Linear algebra is like 'sort': obvious algorithms are slow, and the fastest implementations
call for hardware-specific tuning.

• Dense linear algebra is core functionality for most of linear algebra, and can also serve as
a building block for tensor operations.

• The C++ Standard Library includes plenty of "mathematical functions." Linear algebra
operations like matrix-matrix multiply are at least as broadly useful.

• The set of linear algebra operations in this proposal are derived from a well-established,
standard set of algorithms that has changed very little in decades. It is one of the
strongest possible examples of standardizing existing practice that anyone could bring to
C++.

• This proposal follows in the footsteps of many recent successful incorporations of
existing standards into C++, including the UTC and TAI standard definitions from the
International Telecommunications Union, the time zone database standard from the
International Assigned Numbers Authority, and the ongoing effort to integrate the ISO
unicode standard.

Why should BLAS be in the standard?

"Directions for ISO C++" (P0939R0) offers the following in support of adding linear algebra to the
C++ Standard Library:

• P0939R0 calls out "Support for demanding applications in important application areas, such as
medical, finance, automotive, and games (e.g., key libraries...)" as an area of general concern that
"we should not ignore." All of these areas depend on linear algebra.

• "Is my proposal essential for some important application domain?" Many large and small private
companies, science and engineering laboratories, and academics in many different fields all
depend on linear algebra.

• "We need better support for modern hardware": Modern hardware spends many of its cycles in
linear algebra. For decades, hardware vendors, some represented at WG21 meetings, have
provided and continue to provide features specifically to accelerate linear algebra operations. For
example, SIMD (single instruction multiple data) is a feature added to processors to speed up
matrix and vector operations. P0214R9, a C++ SIMD library, was voted into the C++20 draft.
Several large computer system vendors offer optimized linear algebra libraries based on or closely
resembling the BLAS; these include AMD's BLIS, ARM's Performance Libraries, Cray's LibSci, Intel's
Math Kernel Library (MKL), IBM's Engineering and Scientific Subroutine Library (ESSL), and
NVIDIA's cuBLAS.

Existing Standard

• Most widely used is BLAS

• Standardization effort started in 1995
• Based on 40 years of linear algebra work (see P1417R0)

• Fortran Library

• Many hardware vendors ship their own optimized variants of the
standard
• Intel: MKL, NVIDIA: CuBLAS, IBM: ESSL, ...

Major Problems with the existing standard

• It is Fortran

• Limited Scalar type support

• No Layouts, compile dimensions or inlining

• No path to integrate executors.

Problems with the existing standard:
It is Fortran
• To use BLAS one typically does:

• Figure out how to link against it
• Depending on library this is non trivial due to options such as threading model, integer

types (32bit or 64bit), compiler version etc.

• Intel has a website to generate link line: https://software.intel.com/en-us/articles/intel-
mkl-link-line-advisor

• Write external C function declarations to interface to the Fortran functions if
not provided by vendors
• SUBROUTINE dgemm(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

• extern "C" void F77_BLAS_MANGLE(dgemm,DGEMM)(const char*, const char*,int*,int*,
int*, const double* ,const double* ,int*, const double*, int*, const double*, double*,
int*);

• F77 BLAS MANGLE: deal with random underscores and capitalization depending on
compiler used ...

• Hope that no other library introduced the same functions

Problems with the existing standard:
Limited Scalar Type Support
• Scalar types are not handled via overloads:

• dgemm => double
• sgemm => float
• cgemm => complex<float>
• zgemm => complex<double>

• No way to handle other scalar types such as are proposed now in
p1468

• No way to handle mixed precision

• For complex we rely on same bit representation of Fortran complex
numbers and std::complex ...

Problems with the existing standard:
No Layouts, compile time dimensions or inlining

• BLAS expects the pointers for a matrix to be layed out as column
major
• double A[N][M]; is row major

• Sometimes "trick" the BLAS function via its "transpose" parameters

• Using submatrices from tensors doesn't work generally

• The functions take runtime dimensions (via pointers even) and can't
be inlined
• This makes it unsuitable for small linear algebra operations such as used by
gaming

Problems with the existing standard:
No path for integration of executors
• One can link against a threaded BLAS library or a scalar one

• You can't decide at runtime which to use

• Since Fortran will never know about executors no way to interface
this in the future

• With hardware being more heterogeneous and more hierarchical
(think Sockets, Cores, Threads, SIMD lanes) control over which
resources execute a BLAS function is critical

• Current problem: C++ std::thread and the typical OpenMP runtime of
Fortran BLAS get in each others way
• In HPC: don't use std::thread but OpenMP directives in the application!

To Operator Overload Or Not

• Operator overloading as proposed in ... feels more natural

• But it is hard to express all operations we desire:
• E.g. outer vs inner product: what does A*B do?

• The data types themselves would need to contain executors in the
future (and executor adaptors)

BUT: There is no conflict!
Operator overloading can be implemented on top of a functional interface!

Why functional interface?

• Some function are needed anyway (not enough logical operator
choices)

• Most widely used interfaces are function based (the ones provided by
vendors)

• Can mirror C++ standard parallel algorithms for controlling execution
resources

• Like algorithms we can make the algorithm itself a customization
point: no need to define the entire machinery behind it

• Could serve as low level layer below an operator based interface

Our proposal in a nutshell
voia dgemv(const char* trans_A, int* M, int* N, const doublF* alpha,

const double* A, int* LDA, const doublp* x, int* incx,
00 const double* beta, double* y, int* incy);

dgemv('N', 4, My 3.0, 4, xy 0.010 y,);

mdspan<float,4, dynamic_extent> A(...);
mdspan<double, dynamic_extent> x(...),y(...);

y = 3.0 * A * x;

matrix_vector_product(par, scaled_view(3.0, A), x, y);

• New type of algorithms
• Like algorithms take (optional) execution policies
• mdspan (or mdarray) instead of iterators to represent matrices and vectors

• Scalar scaling parameters and conjugation
• functions returning basic_mdspan with special accessors

• Transposition of matrices
• Functions returning basic_mdspan with special layout

Addressing the major issues of the BLAS standard

• It is Fortran
• => This is not

• Limited Scalar type support
• => Templated on all input/output arguments

• No Layouts, compile dimensions or inlining
• => mdspan provides layouts and compile time dimensions
• => It is C++ template functions and thus could be inlined

• No path to integrate executors
• => Follow whatever happens with parallel algorithms

Comparison with P1385
P1673

• Algorithms Analog

• Function Based

• Relative large common user
API surface
• Most of the common Linear

Algebra capabilities

• Algorithms are
customization points

• Both Small (compile time
sizes) and Large operations
well supported

P1385

• Math Objects with operator
overloading

• Relative small common user
API surface
• Only most fundamental

Linear Algebra capabilities

• Large amount of interlocking
customization points

• Both Small (compile time
sizes) and Large operations
well supported

All the algorithms Helperfunctions etc.
• givens rotation setup

• givens rotation_apply

• linalg_swap

• scale

• linalg_copy

• linalg_add

• dot

• vector norm2

• vector abs sum

• vector idx abs max

• [symmetric_l hermitian_ltriangular_]matrix_vector_product

• tria ngu la r_matrix_vector_solve

• [symmetric_l hermitianlmatrix_rank J1/2]_update

• [symmetric_l hermitian_]matrix_product

• [symmetric_l hermitian_]matrix_rank_2k_update

• tria ngu la r_matrix_vector_solve

• transposed_view

• scaled_view

• conjugated_view

• layout_blas_general

• layout_blas_packed

The Future: Executors and Batched

• Introduce Executors as well as senders and receivers the same way as
in algorithms
• Control where to execute and potentially merge operations

dot(matrix_vector_product (par_unseq.on(CPU), par_unseq.on(GPU_Exec), A,x) , y);

• Batched Operations could be supported by simply increasing the rank
of arguments
• Should cover a decent chunk of basic functions for ML

mdspan<float, dynamic_extent, 4, 4> A(...);

mdspan<double, dynamic_extent, 4> x(...),y(...);

// y = 3.0 * A * x;

matrix_vector_product(par, scaled_view(3.0, A), x, y);

