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Things don't always go as planned...

Missing linker
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National
Laboratories
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Defects in MOFs are now well known
Sandia
National
Laboratories

Effects include:

• Gas storage/separations: altered
mass transport

• Catalysis: Bronsted or Lewis acid sites

• Luminescence: modified band gaps

• Magnetic properties: ferromagnetism
introduced by point defects

• Mechanical properties: reduced
stiffness

%10
Perfect Dislocation Local Defects Large-scale Defects

Fischer et al. Angew. Chem. Int. Ed. 2015, 54, 7234
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When defects turn into virtues: The curious case of zirconium-based
metal-organic frameworks

Marco Taddei
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Energy Safety Research Institute, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN, United Kingdom

Coordination Chemistry Reviews 343 (2017) 1-24

MOFs with tunable acid site concentrations and pore size
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Defects and optical and electrical properties
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■ Defects in a 3D MOF: HKUST-1

■ Defects as color centers: colorimetric sensing of water vapor

■ Guest molecules as dopants (or are they?)

■ Defects in 2D MOFs: Ni3(HITP)2 a "Metal-Organic Graphene Analog"

■ Semiconducting vs. metallic: a DFT-experimental conflict

■ Polycrystallinity and growth mechanism

■ Pd- and Pt-substituted MOGs: tunable semiconductivity
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Many manufacturing processes require rigorous control of
humidity levels, but low-cost, compact sensing packages

Pharmaceuticals: 3%RH at 25 °C

Li battery manufacturing:

Dew point -40 — -45 °C (< 0.5%RH)

HKUST-1: Cu2(CO2)4

Lewis

base

NM=

16

Surface Accoustic Wave

Ai 
11110111.111/3 r

A. Robinson et al. Analytical

Chem. 2012

As synthesized Heated to 180 OC/vacuum



Spin coat and evaporative heating scheme for growth of
HKUST-1 thin films on glass or plastic substrates
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a)

Spin coat
s..., __..,

Modified process from Zhuang et al.

Adv. Funct. Mater. 2011, 21 (8), 1442

b)

6 cycles

100 °C

Heat

Treatment

70 °C

Ullman et al. ACS Appl. Mater. Interfaces 2018, 10, 24201



Water vapor is easily detected and quantified by changes in
the optical reflectance spectrum of HKUST-1
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Hybrid MOF/polymer films detection at RH > 10% using time-
dependent reflectance
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Practical implementation: a low-cost, compact sensor
Sandia
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• Reflectance measurement

• AX(max), 525 nm: green LED

• Misosbestic), 635nm: red LED

• Average photovoltage during alternating 200-µs

pulses of green and red light

• 5 data points/ 2 s

• Normalized, subtracted data << noise than the

green signal alone

• Detection limit < 0.2 %RH

Ullman et al. ACS Appl. Mater. Interfaces 2018, 10, 24201



The origin of the HKUST-1 color change with H20 is a mystery
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Electronic excited states of TCNQ@Cu3(btc)2

Copper Paddlewheel

ligand-field states (D4H)

—15000 cm-1

Cu d orbitals

(C4v)

e(xz,yz)

H20 — framework?

< > e(xz,yz)

—12000 cm-1 b2(xy)   b2(xy)

—10000 cm-1 a1(z2) 
< > 

 a1(z2)

Antiferromagnetically
coupled ground state 

b1(x2-y2)

S = 1 (3A2u)
A

S = 0 (1Aig)

—19000 cmt

Allendorf, M. D. et al. J. Phys. Chem. Lett. 6 (2015), 1182



MOF color centers: partial reduction of Cu dimers in HKUST-1

• "High-quality" (low defect) thin films are colorless
• Pristine MOF: high symmetry reduces oscillator

strength of d-d transitions

• Theory (CASSCF): Cul+ — Cu2+ defects
• Symmetry is reduced
4 d-d absorptions localized on Cu2+ increase

wavenumbers / 1000 cm'
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C. Wöll et al.

ACS Appl. Mater. Interfaces 2017, 9, 37463
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TCNQ@Cu3BTC2: bridging ligand or dopant?
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M. D. Allendorf et al., Science 2014, 343, 66

A. Talin et al., Adv Mater 2015, 27, 3453

M. Dina et al., Angew. Chem. 2016, 55, 3566

TCNQ: 7,7,8,8-tetracyanoquinodimethane
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The case for TCNQ as dopant: band structure of Cu3(BTC)2
shows little or no delocalization
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K. J. Erickson, et al., Adv. Mater., 27 (2015), 3453



The case for TCNQ as dopant: infiltration with TCNQ moves

Ef close to MOF Vb
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TCNQ@Cu2(BTC)3 exhibits strong new absorption bands

H2O@Cu2(BTC)3

Cu(II) d-d transitions
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Electronic excited states of TCNQ@Cu3(btc)2

Copper Paddlewheel

ligand-field states (D4H)

TCNQ-related states

TCNQ(11) -->TCNQ(7-E*) -25000 cm-1

Cu d orbitals

(C4,) d(xz,yz) ->TCNQ(e)

-15000 cm-1 e(xz,yz) 
< > 

e(xz,yz)

d(xy) ->TCNQ(Tc*)
- -6000 - 20000 cm-1
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-10000 cm-1 a1(z2)  
 > 

 a1(z2)

d(x2-y2) ->TCNQ(e)

TCNQ(1-c) 4d(x2-y2) -6600 cm-1

S = 1 (3A2u)
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S = 0 (lAig)

Allendorf et al. J. Phys. Chem. Lett. 6 (2015), 1182



Vapor-phase TCNQ infiltration creates C(TCNQ) nanowires on particle

surfaces

C. Schneider et al. Chem. Sci., 2018, 9, 7405-741



Layer-by-layer MOF film growth: liquid-phase epitaxy

HKUST-1

es,
‘fie
QCM crystal

Automated MOF film growth with QCM capability



a)4,

Cu(TCNQ)L

Cu3BTC2, 20 cy. TCNQ

Cu3BTC , 20 cy.

TC2 to form Cu(I)TCNQ
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Mechanism of bimodal crystallite growth Sandiatrv, National
ffi Laboratories

a). Monocrystal via nucleation

of new 2D layers Estep

Accelerated growth of

compound crystals:

b) and c). New 2D layers formed

at domain boundary between 2

crystallites

d). New surface step energetics

Enuc2D Estep Eif Esurf

If Estep Esurf
4 Bimodal distribution implies

Eif is small

100 nm
V

20 cycles (a)

0 2500 5000 nm

(c) (d)
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Amorphous substrates promote random growth directions,
leading to narrower crystallite size distributions
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Cu3BTC2 film morphology evolves as the number of depositio
cycles increases
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Defects in 2D MOFs: metallic vs. semiconducting behavior
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Metal-Organic Graphene Analogues (MOGs): promising

MOFs for device applications

Ni3(HITP)2 - Experimental conductivity data

• Experimental evidence suggests that the material is
semiconducting.

• Absorption spectrum - optical gap of -0.25 eV

• Conductivity increases with temperature - charge
hopping mechanism

Sheberla et al. J. Am. Chem. Soc. 2014, 136, 8859-8862
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Theory predicts bulk Ni3(HITP)2 to be metallic;

experiment indicates a narrow bandgap semiconductor
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Hypothesis: material performance is governed by defects

M3(11ITP)2

Bottom surface

Ni3(HITP)2

Si02
Si / Si02

1 pm

Ni3(HITP)2

'Fop surface

• Pure or low defect material should have much higher

conductivity and mobility

• 100 nm thick film is approximately 303 layers

• Avg. Surface Roughness: 1.05 nm (3 layers) to 1.43 nm

(4 layers)

• Device channel length 100 p.m

G. Xu and coworkers JACS, 2017, 139 (4), pp 1360-1363
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Potential interface defects
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Layer-layer displacement defect can give rise to a bandgap for
sufficiently large displacements (typically > 4 A)

B3LYP+gCP+D3
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Defects can be interdependent; one type of defect leads
to formation of others

• Example: strike-slip fault in one layer
forces the presence of a layer-layer
displacement in half of the material

4A single defect can break the conjugation
pathway within the bulk

4 Opens a band gap in one direction

4 Drastically reduces electron momentum

4 Leads to a hopping barrier

Top-down view: Monolayer with Strike-Slip Fault

Monolayer

With Strike-

Slip Fault

Top-down view: Bilayer with Strike-Slip Fault

AB
=WO

Stacking

Strike-Slip Displacement

Faults 
r -.4 

Defect

M.E. Foster et al. J. Phys. Chem. Lett. 2018, 9, 481-486



MOF thermoelectric materials: two prototypes

Ni3(HITP)2

2D "Metal-Organic Graphene Analogue" (MOG)
L. Sun et al. Joule 2017

Material Type aF
(S/cm)

TCNQ@Cu3(BTC)2 1 p 1 0.0045

Cu3(btc)2

3D Metal-Organic Framework

K. Ericksson et al. Adv. Mater. 2015, 27, 3453

K

r0.27

(W/m • K)
1

Ni3(HITP)2 2 n  58.8 I  0.2 II -11.9  8.31x10-3 1.19x10-3

Values at 25 oC. 1 K. J. Erickson et al. Adv. Mater. 2015, 27, 3453. 2L. Sun et al. Joule 1 (2017), 168.

75-1 PF

(0/ /K) (IA A I / m • K2)

ZT (300K)

+375 I 0.057 7.0x10-5

How can we improve the thermoelectric properties of MOFs?



Tuning M3(HITP)2 band structure by metal ion substitution
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• Both ligand and metals contribute
• Indirect bandgap

- Small compared to most MOFs
- Increases Ni 4 Pd 4 Pt

Density of states:
- Singularities: characteristic of 2D
materials

- Linear behavior on either side of
bandgap representative of 3D
materials

■ Y. He et al. Phys. Chem. Chem. Phys., 2017, 19, 19461



What is the structure of the Pd and Pt materials Sandia
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PDF: evidence of M-M and M-N bonding in all three M3(HITP)2
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Measured thermoelectric data for Ni, Pd, and Pt structures
show both p- and n-type are possible

Sandia
National
Laboratories

• Ni is n-type

• Pd and Pt are p-type materials
4 consistent with predicted bandgap

trend

• a and 52 both increase 4 PF also
increases

• Power factor:
Ni < Pd < Pt

Sample R

(n)
p

(n•cm)
a

(S/cm)
S

(vv/K)
Power Factor

(pv/mK2)

48.2 5.123 0.195 -13.46 3.54 x 10-3

43.7 3.835 0.261 +19.63 10.05 x 10-3

40.0 3.060 0.327 +37.69 46.42 x 10-3



Conclusions
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■ Modifying metal ion and/or linker are effective strategies for
tailoring MOF electrical properties

■ Control of film thickness could be critical to achieving desired
electronic properties

■ MOG "monolayers" (non-interacting multilayers)

■ Defects affect MOF charge transport properties
■ Grain boundaries
■ Stacking faults/polymorphs
■ Lattice mismatches

■ We need synthetic methods to control and minimize defects
■ Defect formation might be a strategy for tailoring electrical properties
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Alternative role for TCNQ: Cu2(btc)4 paddlewheels bridged by TCNQ

• 2 TCNQ will fit in each large pore

(16 TCNQ/unit cell)

4 Continuous TCNQ-Cu2-TCNQ pathway
with 1 TCNQ/large pore = 8 TCNQs/unit cell

• Measured loading = 8 TCNQs/unit cell

• IR, Raman, PXRD, UV/Vis, and EPR

support this model



TBCNQ couples neighboring Cu dimers 4 lowers barrier to
charge transfer

Three-site model:
Donor-Bridge-Acceptor

Superexchange mechanism:

HAB-Electronic coupling matrix element

HAB (qi A

H AC = KW A

1 1
0 1
Reaction Coordinate

Cu2(btc)4 TCNQ Cu2(btc)4
(donor) (acceptor)

H

H



Experimental PDF data for Ni3(HITP)2 are in best agreement
with a 2D structure with offset layers
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A pillared MOG may provide both charge transport
tunability and reduce the effects of defects
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Laboratories

Proposed Modification of the Graphene Analogue Ni3(HITP)2 To Yield
a Semiconducting Material
Michael E. Foster,*' I Karl Sohlberg,÷ Catalin D. Spataru, I and Mark D. Allendorfl
-;- 
Sandia National Laboratories, Livermore, California 94551-0969, United States

..Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States

J. Phys. Chem. C 20161 120, 15001.

44



Modifying the MOG interlayer spacing modifies the band gap
Sandia
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Laboratories

Ni3(HITP)2 band structure as a function of interlayer spacing (slipped parallel structure)
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MOG Bandgap can be tuned by varying interlayer spacing
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Band gap in Ni3(HITP)
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Substituting Cr(II) for Ni(II) and inserting a pillar ligand as a

spacer (e.g. bpy) causes a bandgap to form
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11.4 St

o

o

Cr3(HITP)2(b1M3

b

2.00

1.50

1.00

'a 0.50,

0.00  

-0.50

-1.00

r%1

Bandgap

1.15 eV

K G MG

Pillar ligands also rigidify the structure and prevent formation of polymorphs
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Presentation topics

• Luminsecent MOFs for solid-statc
lighting and radiation detection

• Conducting MOFs
.1:• .1 •. •n. .1%

•;• •; • IP .1:1• •;• •r•
• • • 4"

• Defects and their influence on
electrical conductivity
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Cost, toxicity, and manufacturability limit applicatione,
Laboratories

thermoelectric (TE) generators

http: t ermoelectric-generator.com/

Mobicool

www.alpha etenergy.corn

p PV module, T=80 °C
Cu plate

1
heat sink, T=25 °C



Cost, toxicity, and manufacturability limit applicatiansga
Laboratories

thermoelectric generators
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Polymer TEs could solve these
challenges

Zebarjadi et al., Energy Environ. Sci., 2012, 5, 5147
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Disorder limits charge mobility in polymers
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2

H. Bassler, A. Kohler, Top Curr

Chem 312, 1, 2012
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Ni2(HITP)3 powder is n-type, low thermal conductivity
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Can we synthesize the Pd and Pt versions to test theoretical predictions?



Synthesis of Pd3(HITP)2 and Pt3(HITP)2: Elemental

analysis (EDX)
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20

15

10

• Theoretical • Ni • Pd Pt

PDF data indicate Ni3(HITP)2

and Pt3(HITP)2 have the

same structure

• Synthetic method similar to

Sheberal et al. (JACS 2014) for

Ni3(HITP)2

• Ni and Pt have similar C:N:M ratios

• Pd appears to arrange differently

• CI content is variable

Chlorine Molar Ratio
0.59 CI : 1.0 Ni

• 0.50 CI : 1.0 Pd
• 0.18 CI : 1.0 Pt

5 lig
,  r 4 NM MI 1 l

Carbon Nitrogen Metal Oxygen

Theoretical 12 4 1 0

Ni 15.5 4.9 1.0 1.5

26.2 1.0 3.0

Pt 15.2 5.0 1.0 2.3



Pd and Pt versions are electrically conducting

• Trend qualitatively supports theory

• Larger metal cation increases electrical
conductivity

• Conductivity < reported by D. Sheberal
et al. for Ni3(HITP)2

- Very thin pellet
- Electrical contacts sub-optimal

2.00

1.50

1.00

0.50

0.00 7-11111

Increased 
conductivity.

A

Ni Pd Pt Ni3HITP2*

a (S/cm) 0.195 0.263 0.327 2

*D. Sheberal et al. JACS 2014
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Porous Field-Effect Transistors Based on a Semiconductive Metal—
Organic Framework
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