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Things don’t always go as planned...
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Sandia
Defects in MOFs are now well known L=

Effects include:
= (Gas storage/separations: altered

mass transport Perfect Dislocation Local Defects Large-scale Defects
= Catalysis: Brgnsted or Lewis acid sites

—
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= Luminescence: modified band gaps
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= Magnetic properties: ferromagnetism p:‘:!::E h—
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introduced by point defects '3‘;3--4:.',:
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= Mechanical properties: reduced -

stiffness
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When defects turn into virtues: The curious case of zirconium-based
metal-organic frameworks |I| i

Marco Taddei
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Coordination Chemistry Reviews 343 (2017) 1-24
MOFs with tunable acid site concentrations and pore size
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Sandia
Defects and optical and electrical properties ) foor

= Defects in a 3D MOF: HKUST-1

= Defects as color centers: colorimetric sensing of water vapor

= Guest molecules as dopants (or are they?)

= Defects in 2D MOFs: Ni;(HITP), a “Metal-Organic Graphene Analog”

= Semiconducting vs. metallic: a DFT-experimental conflict

= Polycrystallinity and growth mechanism
= Pd- and Pt-substituted MOGs: tunable semiconductivity




Many manufacturing processes require rigorous control of
humidity levels, but low-cost, compact sensing packages
HKUST-1: Cu,(CO,),
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Li battery manufacturing: —
Dew point -40 —-45 °C (< 0.5%RH) As synthesized Heated to 180 °C/vacuum?7



Spin coat and evaporative heating scheme for growth of =
HKUST-1 thin films on glass or plastic substrates

., — 7 Y

Heat

Spin coat 6cycles /3  Treatment
70 °C

Modified process from Zhuang et al.
Adv. Funct. Mater. 2011, 21 (8), 1442

b)




Water vapor is easily detected and quantified by changes in )
the optical reflectance spectrum of HKUST-1
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Hybrid MOF/polymer films detection at RH = 10% using time-
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dependent reflectance
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Practical implementation: a low-cost, compact sensor
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The origin of the HKUST-1 color change with H,0 is a mystery
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Molecular analogue of MOF
of Cu(acetate),(pyrazine)
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Electronic excited states of TCNQ@Cu,(btc),

Copper Paddlewheel
ligand-field states (D,,)

— H,0 - framework? ~19000 cm-!
Cu d orbitals

(Ca)

e(xz,yz)

~15000 cm! e(xz,yz)

~12000 cm™  by(xy) e b, (xy)

~10000 cm?®  a,(z?) O_ a,(z2)

S=1(3A,,)
Antiferromagnetically b 22 T -
coupled ground state  °2Y’) _<% b, (x*-y?)
S=0('A,)




MOF color centers: partial reduction of Cu dimers in HKUST-1

* “High-quality” (low defect) thin films are colorless
* Pristine MOF: high symmetry reduces oscillator
strength of d-d transitions
a)
. Theory (CASSCF): Cu1+ - Cu2+ dEfECtS functionalized surface
* Symmetry is reduced

- d-d absorptions localized on Cu?* increase ) [\ r\ /A
wavenumbers / 1000 cm™ i 2
0.0 8.1 16.1 242 e B e I

¥ defec;-free: '
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P Cu2+/Cu2+ D4h x100 1
1.0 } |defects: .
L Cu2+/Cu+ D4h
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% ; 6. Cu2+/Cu+ distorted ! i / |
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TCNQ@Cu,BTC,: bridging ligand or dopant? i)

TCNQ
Cu,BTC, — > TCNQ®@Cu,BTC, P
solvent N SN

TCNQ: 7,7,8,8-tetracyanoquinodimethane
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- Holes are the majority carrier
M. D. Allendorf et al., Science 2014, 343, 66 H. Baumgart et al.,
A. Talin et al., Adv Mater 2015, 27, 3453 ECS J. Sol. State Sci. Technol., 2017, 6, 150
M. Dinca et al., Angew. Chem. 2016, 55, 3566 15



The case for TCNQ as dopant: band structure of Cu;(BTC),
shows little or no delocalization

Predicted DOS for Cuy(BTC),, computed by DFT using the hybrid
functional HSEO6

Cu,(BTC)
700 T T T 3 T 2 T T T | | i !
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This picture is consistent with insulating nature of this MOF

K. J. Erickson, et al., Adv. Mater., 27 (2015), 3453



The case for TCNQ as dopant: infiltration with TCNQ moves
E; close to MOF V,

Predicted DOS for Cu,(BTC),, computed by DFT using the hybrid functional HSE06

Cu,(BTC), TCNQ@Cu,(BTC), + 64xH,0
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TCNQ@Cu,(BTC); exhibits strong new absorption bands

H,0@Cu,(BTC), TCNQ@Cu,(BTC),
Cu(ll) d-d transitions ‘ Charge transfer transitions
(weak)
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Electronic excited states of TCNQ@Cu,(btc),

Copper Paddlewheel
ligand-field states (D,,)

— TCNQ-related states

Cu d orbitals
(C4v)
e(xz,yz)

~15000 cm™?

~12000 cm™?

~10000 cm™* a,(z?)

—  TCNQ(m) 2d(x?-y?)

— TCNQ(rt) 2 TCNQ(mt*)
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*
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Vapor-phase TCNQ infiltration creates C(TCNQ) nanowires on particle
surfaces

1.0TCNQ@Cu,BTC,

{.

C. Schneider et al. Chem. Sci., 2018, 9, 7405-741



Layer-by-layer MOF film growth: liquid-phase epitaxy

HKUST-1

Automated MOF film growth with QCM capability




intensity / a.u.
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— Cu(TCNQ) from Cu3BTC;

| 50 dep. cycles

OcusBTC, = 1011 S.cm™!
Ocu(Teng) = 107! S:cm™!

-1.0 -0.5

0.0
Voltage / V

0.5 1.0

Cu(ll) and TCNQ reduced by MeOH/H,0:

CuBTC +3TCNQ+6H*+6e-
-> 3Cu(TCNQ) + 2H:BTC (2)

CH:OH - CHOH + 2H*+ 2¢” (3)

CusBTC+ 3TCNQ + 3CH.OH
> 3Cu(TCNQ) + 2H:BTC + 3CHOH (4)

* Cu(TCNQ) is n type vs. TCNQ®@Cu,BTC, is p
type

* New method for depositing Cu(TNCQ) on
patterned substrates: MOF provides
template

K. Thiirmer, C. Schneider et al., ACS Appl. Mater. Interfaces, 2018, 10 (45), 39400-39410



Mechanism of bimodal crystallite growth 7| Netora

20 cycles (a)

a). Monocrystal via nucleation
of new 2D layers E,
Accelerated growth of
compound crystals:

b) and c). New 2D layers formed
at domain boundary between 2
crystallites

d). New surface step energetics

Enuc2D = Estep + Eif - ESurf

If Estep = Esurf
— Bimodal distribution implies
E;is small

K. Thirmer, C. Schneider et al., ACS Appl. Mater. Interfaces, 2018, 10 (45), 39400-39410



Amorphous substrates promote random growth directions, (i)
leading to narrower crystallite size distributions

CU3(BTC)2 / ITO

Cus(BTC), / SiO,/Si(001)
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Cu;BTC, film morphology evolves as the number of depositior@ Sadia
cycles increases
O

ITO substrate + Cu acetate (b) 2 cycles
o o T

300 1

200 1

Counts

100 1

0.151

0 2500 5000 nm

0.101

20 cycles

0.051

Volume fraction

0-00 10* 105 106 107

Particle volume / nm?3
From the unusual bimodal, non-log-
normal distribution of crystal domain
sizes, we conclude that the nucleation of
new layers of Cu:BTC:is greatly

-1 enhanced by surface defects and thus2 .

K. Thirmer, C. Schneider et al., ACS Appl. Mater. Interfaces, 2018, 10 (45), 39400-39410



Defects in 2D MOFs: metallic vs. semiconducting behavior




Metal-Organic Graphene Analogues (MOGs): promising @
MOFs for device applications

Ni;(HITP), — Experimental conductivity data Conductivity vs. Temp.

50 - thick film on quartz ..
[ )
- o
1 L
g 45 — ..‘ \')‘\g
w
~ 40 /
2
> S
£ 35 x\?/
- il % Charge
§ 1 & Hopping
am * Behavior
I " 1 * 1 L I L)
100 200 300 400 500
Temperature / K
Absorption Spectrum
0.14
1 IBandgap
- Experimental evidence suggests that the material is  °'*7]  /~025eVv
semiconducting. , 0.10 -
e .
i ; <
» Absorption spectrum — optical gap of ~0.25 eV Ridie =
« Conductivity increases with temperature — charge s I
hopping mechanism 004 +——F—"F—"—T7"—T"—T7—
0 1 2 3 4 5 6
Sheberla et al. J. Am. Chem. Soc. 2014, 136, 8859-8862 Energy / eV



Theory predicts bulk Ni;(HITP), to be metallic; i)
experiment indicates a narrow bandgap semiconductor

Band structure of Ni;(HITP),
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Hypothesis: material performance is governed by defects

Ni3(HITP)2 N Niy(HITP),

/- Niy(HITP), 5 Top surface
102

Bottoh surface

Si

* Pure or low defect material should have much higher
conductivity and mobility

e 100 nm thick film is approximately 303 layers

e Avg. Surface Roughness: 1.05 nm (3 layers) to 1.43 nm
(4 layers)

e Device channel length 100 um

G. Xu and coworkers JACS, 2017, 139 (4), pp 1360-1363




Potential interface defects

1

Perpendicular
Grain Boundary

Layer-Layer
Displacement Defect

Strike-Slip Fault




Layer-layer displacement defect can give rise to a bandgap for
sufficiently large displacements (typically > 4 A)
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Defects can be interdependent; one type of defect leads
to formation of others

Top-down view: Monolayer with Strike-Slip Fault

= Example: strike-slip fault in one layer m:%'f:i;
forces the presence of a layer-layer G Slip Fault

displacement in half of the material

- A single defect can break the conjugation
pathway within the bulk

- Opens a band gap in one direction

—> Drastically reduces electron momentum

—> Leads to a hopping barrier

AB
Stacking

Strike-Slip
Faults

Displacement

—) Defect

=

M.E. Foster et al. J. Phys. Chem. Lett. 2018, 9, 481-486




MOF thermoelectric materials: two prototypes

Nia(HlTP)z CU3(th)z
2D “Metal-Organic Graphene Analogue” (MOG) 3D Metal-Organic Framework
L. Sun et al. Joule 2017 K. Ericksson et al. Adv. Mater. 2015, 27, 3453

Material Type c K S PF ZT (300K)
(S/cm) (W/m = K)|| (BV/K) | (pnW/m = K?)
TCNQ@Cu,(BTC), ! p 0.0045 0.27 +375 0.057 7.0x10°
Ni;(HITP), 2 n 58.8 0.2 -11.9 8.31x103 1.19x10°3

Values at 25 oC. 1 K. J. Erickson et al. Adv. Mater. 2015, 27, 3453. 2L. Sun et al. Joule 1 (2017), 168.

How can we improve the thermoelectric properties of MOFs?




Tuning M;(HITP), band structure by metal ion substitution
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Large CB and VB dispersion
Both ligand and metals contribute
Indirect bandgap

- Small compared to most MOFs

- Increases Ni 2 Pd - Pt

Density of states:
- Singularities: characteristic of 2D

materials

- Linear behavior on either side of
bandgap representative of 3D
materials




What is the structure of the Pd and Pt materials h m”' .

Pd afhld Pt-MOGS fack lormgrrange order @ [T 5.,' T NigHITR),
BET Surface area | /\ | e ,
Ni 251 m?/g - B * Graphene-like
- Pd 148 m%/g Ry
&~ 2 —Pd
- Pt 67 m?%/g . AW
~ ) "rﬂﬂ H.H][P 1500 "ﬂﬂﬂ 2500 ‘iﬂﬂ(} 1-"){]] 4000
g Wavenumber (cm’ ]'
= .
o —Ni — p— . " .
e il i i (c) | EERRR ; —;:‘#M"“‘f‘ de(HlTP)y
= 4 8 12 16 20 24 28 32 36 40 NN
2 6 (deg)
0 0.2 0.4 0.6 0.8 1
Relative Pressure (P/P,)
L:M ratios from elemental analysis it . lsmﬂ; TS 3000 1500
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C basis N basis R REEEETEEEY
Theoretical (Ni;(HITP),) 0.67 0.67 Gllim e | PRIHITP),
Pd,L, 1.13 1.02 | ~
Pt,L, 0.73 0.73 |
Does the Pd version have missing metal ions or “_; 4 ] |
different structure? " ’”{il:’,fm:f;’e,ff’m“f“ o



in all three M;(HITP),

ing

evidence of M-M and M-N bondi

PDF

O Niz(HITP),
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M-N (1.8 in Ni)

Interlayer M-M
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Measured thermoelectric data for Ni, Pd, and Pt structures

show both p- and n-type are possible

noen
V.05V

n nan
V.UV

Pt

* Niis n-type

* Pd and Pt are p-type materials
—> consistent with predicted bandgap

’>E‘ D
< trend
g 0.010 3
o and $? both increase = PF also
increases
030
. Delta T e Power factor:
Ni < Pd < Pt
Sample R P (o] S Power Factor
(Q) | (Qecm) (S/cm) (nV/K) (LMW/mK?)
Ni 48.2 5.123 0.195 -13.46 3.54x 103
Pd 43.7 3.835 0.261 +19.63 10.05 x 1073
Pt 40.0 3.060 0.327 +37.69 46.42 x 103




Conclusions

= Modifying metal ion and/or linker are effective strategies for
tailoring MOF electrical properties

= Control of film thickness could be critical to achieving desired

electronic properties
= MOG “monolayers” (non-interacting multilayers)

= Defects affect MOF charge transport properties
= Grain boundaries
= Stacking faults/polymorphs
= Lattice mismatches

= We need synthetic methods to control and minimize defects
= Defect formation might be a strategy for tailoring electrical properties
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Alternative role for TCNQ: Cu,(btc), paddlewheels bridged by TCNQ

« 2 TCNQ will fit in each large pore
(16 TCNQ/unit cell)

— Continuous TCNQ-Cu2-TCNQ pathway
with 1 TCNQ/large pore = 8 TCNQs/unit cell

 Measured loading = 8 TCNQs/unit cell

* IR, Raman, PXRD, UV/Vis, and EPR
support this model




TBCNQ couples neighboring Cu dimers = lowers barrier to
charge transfer

Y (T
Three-site model:
(T Donor-Bridge-Acceptor
3
2
L Superexchange mechanism:
o)
L‘I‘,:’ H g-Electronic coupling matrix element
H,=(¥Y,HY,)
H,=(Y,HY.)

Reaction Coordinate

Cuy(btc), TCNQ  Cuy(btc),
(donor) (acceptor)




Experimental PDF data for Ni;(HITP), are in best agreement
_with a 2D structure with offset layers
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A pillared MOG may provide both charge transport 7| Netora
tunability and reduce the effects of defects

Proposed Modification of the Graphene Analogue Ni;(HITP), To Yield
a Semiconducting Material

Michael E. Foster,*" Karl Sohlberg,i Catalin D. Spataru,T and Mark D. Allendorf'

"Sandia National Laboratories, Livermore, California 94551-0969, United States
*Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States

J. Phys. Chem. C 2016, 120, 15001.

conducting




7| Netora

Modifying the MOG interlayer spacing modifies the band gap

=—

Ni;(HITP), band structure as a function of interlayer spacing (slipped parallel structure)

Decreasing interlayer interaction
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MOG Bandgap can be tuned by varying interlayer spacing

Band gap in Ni;(HITP)

0.25
o Parallel-stacked -
.. ) ] [ I
=  Minimum E slipped .
e parallel - - 0o ©
. O
- (o]
2 015 .
a O
5” ]
- O
a 0.0 ]
O
m
0.05 o
=
000 ~® @ 8 0O0000O0 1
3.2 3.8 4.4 5.0
Bulk d (A) Separated
solid monolayers



Substituting Cr(ll) for Ni(ll) and inserting a pillar ligand as a [dh
spacer (e.g. bpy) causes a bandgap to form
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Cr;(HITP),(bpy),
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Pillar ligands also rigidify the structure and prevent formation of polymorphs




Presentation topics

= Luminsecent MOFs for solid-state S;Q-
lighting and radiation detection |

= Conducting MOFs

= Defects and their influence on
electrical conductivity




Cost, toxicity, and manufacturability limit applicat'@]m_
thermoelectric (TE) generators
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Cost, toxicity, and manufacturability limit applicatimj
thermoelectric generators

{a) n-type

Polymer TEs could solve these
challenges
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Zebarjadi et al., Energy Environ. Sci., 2012, 5, 5147




Disorder limits charge mobility in polymers ) e

Si ~ 1000 cm?/Vs

High efficiency

Short contact polymers AM OLED display

10 -

Mobility
em?/Vs Colour, video rate,
- 14 Polythiophenes AM LCD displays
Colour, video rate
EPD displays
1 Large area, low refresh

Polyfluorenes rate EPD [e.g. signage)

Small low refresh rate
EPD (e.g. e-paper)
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D. Sheberal, M. Dinca, et al. J. Amer. Chem. Soc 2014

“Metal-Organic Graphene Analogue” (MOG)




Ni,(HITP); powder is n-type, low thermal conductivity
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Can we synthesize the Pd and Pt versions to test theoretical predictions?
————



Synthesis of Pd;(HITP), and Pt;(HITP),: Elemental 7 iz
analysis (EDX)

e Synthetic method similar to
Sheberal et al. (JACS 2014) for

25 i
M Theoretical ® Nj ® pd Pt NI3(HITP)2
* Ni and Pt have similar C:N:M ratios
* PDF data indicate Ni;(HITP), | Pd appears to arrange differently
o and Pt;(HITP), have the |, (| content is variable
& 15 same structure
5
2 Chlorine Molar Ratio
10 e 0.59CI:1.0Ni
e 0.50CI:1.0Pd
e 0.18ClI:1.0Pt
| I
= I . 1] .
Carbon Nitrogen Metal © Oxygen
Theoretical 12 4 1 0
Ni 15.5 4.9 1.0 1.5
Pd 26.2 10.6 1.0 3.0
Pt 15.2 5.0 1.0 2.3




Pd and Pt versions are electrically conducting

2.00 X

* Trend qualitatively supports theory

* Larger metal cation increases electrical 1.50
conductivity

* Conductivity < reported by D. Sheberal
et al. for Niy(HITP),

- Very thin pellet

: i 0.50 e
- Electrical contacts sub-optimal %’ \4
~ m |

Ni Pd Pt Ni;HITP,*
o (S/cm) 0.195 0.263 0.327 2

*D. Sheberal et al. JACS 2014
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