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1. Modelling of rarefied gas flows
1. Why not use DSMC?
2. What other methods are there?
2. Quasi-Particle Simulation (QUIPS)
1. Distribution function representation
2. Collision integral evaluation
3. Remapping scheme
3. Hybridization
1. Why hybridize in velocity space?
2. Velocity-space hybridization particulars
1. Velocity space decomposition
2. Collisions
3. Merging
4. Numerical results
5. Conclusion
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® Statistical fluctuations, issues with modelling of low-speed flows
® Difficulty resolving low populations
® Excited internal states
® High-velocity particles
®* Trace species
® Difficulty resolving low-probability events (such as recombination
reactions)
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* DSMC modifications
® Variance-reduced DSMC (N. Hadjiconstantinou)
® Variable-weight DSMC (S. Rjasanow, |. Boyd, R. Martin)
® Distributional DSMC (C. Schrock)
®* Fokker-Planck-DSMC (M. Gorji, P. Jenny, M. Torrilhon)
®* Model equations (BGK, ES-BGK, Shakhov model)
* Spectral methods (I. Gamba, A. Alexeenko, L. Wu, L. Pareschi)
®* Discrete velocity methods (A. Bobylev, D. Goldstein, P. Varghese, L.
Mieussens)
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Discrete velocity method.:

® Select a fixed (discrete) set of allowed velocities
®* Can replace integral collision operator with a sum
® Separate convection and collision parts

In non-dimensional form:
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DSMC QUIPS
“Fixed mass, variable velocity “Fixed velocity, variable mass
particles.” quasi-particles.”

Resolution limited by Allows resolution of
ratio of real molecules tails/trace populations up to
to DSMC particles machine precision
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How to compute collision integral?

A Monte-Carlo method:

® Select two discrete velocity locations (based on their mass)
®* Deplete them by a small value

®* Repeat many times
o

Parameter that controls number of collisions/noise
n

N 1

coll CI%MS

“ "(m—2n,.0)% (""" T\~
Ap = At ned)_ sign (pmd @) go

'7f 2KnNcoy

The University of Texas at Austin ="

&

7 Peter Clarke thesis defence, 2015




How to compute collision integral (replenishment)?

Find post-collision velocity (random point on a sphere)
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But velocity does not necessarily lie on grid!

®* Remap post-collision mass to 7 points on grid
® Conserves mass, momentum, energy
®* Produces (small amounts of) negative mass
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QUIPS (Quasi-Particle Simulations):

Strictly conservative

Can handle multiple species, non-uniform grids

Can handle internal energies (rotational, vibrational)
Can model chemical reactions

Variance reduction
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What happens if we combine DSMC and QUIPS
representations?
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Why hybridize in velocity space?

¢ Easy to do convection

¢ Easy to do boundary conditions

®* DVM have issues when there are discontinuities in boundary
conditions

®* Faster (represent bulk of distribution with a few particles)

® Velocity-space hybridization is a new approach
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How to hybridize?

® Pick region in velocity space where particles can have any velocity
®* Use DSMC collision mechanics (instead of small
depletion/replenishmen™
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Sources of new particles in DSMC region?

1.Post-collision velocity lies inside the region
2.Remapping
3.Collision of two variable-weight DSMC
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How to avoid (exponential) growth of number of particles?

®* Do merging
® Current work utilizes a simple grid-based approach (M*M*M cells);

CPU time~ O(N,); RAM~ O(M?)
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Example of hybrid VDF representation
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Pure QUIPS VDF, RMS=1.5e-3
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Pure QUIPS VDF, RMS=1.5e-3
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Numerical results

® Initialize with Maxwellian distribution, look at noise (RMSE) in tails and
In high-order moments
®* CPU time per step vs. RMSE as measure of efficiency

Variable parameters:

Extent of velocity grid
Velocity grid spacing
CRrums

Extent of DSMC region
Number of merging cells (~number of DSMC particles)

1.
2.

3.
4.
5.
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Computational time per collision step vs. error in tails

Time per step, s
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QUIPS, fine grid
QUIPS, coarse grid
Hybrid, Fsmay, fine grid, M = 64
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®* A new approach to modelling rarefied gas flows based on a velocity
space hybridization has been developed and tested for a single-
species monoatomic gas

®* Such an approach can give better computational efficiency (compared

to a pure QUIPS approach) and less RAM usage (compared to
SPARTA)

Further things to look at:

® Internal energies

® Variance reduction

®* 1-D and 2-D problems

®* New metrics for comparison (noise in macroscopic variables; noise in reaction rates)
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