
TEXAS eft3i
The University of Texas at Austin Computational Fluid Physics Lab

II
ODEN

Sandia
National
Laboratories

A velocity-space hybridization approach
to modelling rarefied gas flows

Georgii Oblapenko, David Goldstein, Philip Varghese, Christopher Moore

Oden Institute for Computational Engineering and Sciences, UT Austin
Department of Aerospace Engineering and Engineering Mechanics, UT Austin

Sandia National Laboratories

Supported by Sandia National Laboratories

1

SAND2019-8226PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



Outline

1. Modelling of rarefied gas flows
1. Why not use DSMC?
2. What other methods are there?

2. Quasi-Particle Simulation (QUIPS)
1. Distribution function representation
2. Collision integral evaluation
3. Remapping scheme

3. Hybridization
1. Why hybridize in velocity space?
2. Velocity-space hybridization particulars

1. Velocity space decomposition
2. Collisions
3. Merging

4. Numerical results
5. Conclusion

TEXAS i ii.
ODEN

The University of Texas at Austin Computational Fluid Physics Lab

Sandia
National
Laboratories 2



Why not use DSMC?

• Statistical fluctuations, issues with modelling of low-speed flows
• Difficulty resolving low populations
• Excited internal states
• High-velocity particles
• Trace species

• Difficulty resolving low-probability events (such as recombination
reactions)
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Other methods for rarefied flows

• DSMC modifications
• Variance-reduced DSMC (N. Hadjiconstantinou)
• Variable-weight DSMC (S. Rjasanow, I. Boyd, R. Martin)
• Distributional DSMC (C. Schrock)
• Fokker-Planck-DSMC (M. Gorji, P. Jenny, M. Torrilhon)

• Model equations (BGK, ES-BGK, Shakhov model)
• Spectral methods (I. Gamba, A. Alexeenko, L. Wu, L. Pareschi)
• Discrete velocity methods (A. Bobylev, D. Goldstein, P. Varghese, L.

Mieussens)
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Discrete Boltzmann Equation

Discrete velocity method:

• Select a fixed (discrete) set of allowed velocities
• Can replace integral collision operator with a sum
• Separate convection and collision parts

In non-dimensional form:
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QUIPS vs DSMC
DSMC QUIPS

"Fixed mass, variable velocity "Fixed velocity, variable mass
particles." quasi-particles."
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QUIPS collisions

How to compute collision integral?

A Monte-Carlo method:
• Select two discrete velocity locations (based on their mass)
• Deplete them by a small value
• Repeat many times
• Parameter that controls number of collisions/noise
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QUIPS collisions

How to compute collision integral (replenishment)?

Find post-collision velocity (random point on a sphere)
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QUIPS Collisions: Remapping

But velocity does not necessarily lie on grid!

• Remap post-collision mass to 7 points on grid
• Conserves mass, momentum, energy
• Produces (small amounts of) negative mass
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QUIPS summary

QUIPS (Quasi-Particle Simulations):

• Strictly conservative
• Can handle multiple species, non-uniform grids
• Can handle internal energies (rotational, vibrational)
• Can model chemical reactions
• Variance reduction
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Hybridization in velocity space

What happens if we combine DSMC and QUIPS
representations?
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Hybridization in velocity space

Why hybridize in velocity space?

• Easy to do convection
• Easy to do boundary conditions
• DVM have issues when there are discontinuities in boundary

conditions
• Faster (represent bulk of distribution with a few particles)
• Velocity-space hybridization is a new approach
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Hybrid QUIPS/DSMC

How to hybridize?

• Pick region in velocity space where particles can have any velocity
• Use DSMC collision mechanics (instead of small

depletion/replenishmer"
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Hybrid QUIPS/DSMC

Sources of new particles in DSMC region?

1.Post-collision velocity lies inside the region
2.Remapping
3.Collision of two variable-weight DSMC
particles: requires splitting
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Hybrid QUIPS/DSMC

How to avoid (exponential) growth of number of particles?

• Do merging
• Current work utilizes a simple grid-based approach (M*M*M cells);

CPU timee%, O(Np); RAIVH, O(M3)
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Hybrid QUIPS/DSMC
Example of hybrid VDF representation
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Hybrid QUIPS/DSMC

Numerical results

• Initialize with Maxwellian distribution, look at noise (RMSE) in tails and
in high-order moments

• CPU time per step vs. RMSE as measure of efficiency

Variable parameters:
1. Extent of velocity grid
2. Velocity grid spacing
3. CRMS
4. Extent of DSMC region 
5. Number of merging cells (-number of DSMC particles) 
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Hybrici QUIPS/DSMC

Computational time per collision step vs. error in tails
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Hybrid QUIPS/DSMC

Computational time per collision step vs. error in moments
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Conclusions

• A new approach to modelling rarefied gas flows based on a velocity
space hybridization has been developed and tested for a single-
species monoatomic gas

• Such an approach can give better computational efficiency (compared
to a pure QUIPS approach) and less RAM usage (compared to
SPARTA)

Further things to look at:
• Internal energies
• Variance reduction
• 1-D and 2-D problems
• New metrics for comparison (noise in macroscopic variables; noise in reaction rates)
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