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APPLICATION: ANALYSIS OF POPULATION OF IMAGES @

= Suppose we want to test a treatment for Alzheimer’s disease.

= Data: Brain images of two groups of Alzheimer’s patients with multiple images per
patient taken over time

=Two groups: treatment and control

Two questions:
* How do we analyze these high-dimensional images (120 x ~277,000) collectively?

" How do we determine if the treatment is effective?




APPLICATION TO TRAIN VIDEO DATA
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Two questions:
* How do we reduce the dimensions of these video frames?

* How do we detect significant differences between and within video
segments?
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TENSOR METHODS
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Tucker decomposition of a three-way array:
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Question: Can we develop hypothesis testing procedures for this framework, where C
measures the temporal correlation between frames?




MODE-n UNFOLDINGS @

Tensors can be unfolded into various matrices that contain all of the elements of the

tensor.

The best way to understand how this works is by considering an example. Let the
frontal slides of a tensor X € R3*4%X2 he

1 4 7 10 13 16 19 22
X1=1(2 5 8 11| ,Xo= 114 17 20 23
3 6 9 12 15 18 21 24

1 4 7 10 13 16 19 22
Xmpy=12 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24
1 . 3 13 14 15]
= 4 5 6 16 17 18
2)~=17 8 9 19 20 21
10 11 12 22 23 24
X [ 3 2 3 4 5 ... 9 10 11 12
3~ 13 14 15 16 17 .. 21 22 23 24|°



GAUSSIAN DISTRIBUTIONS

m Scalar: x

m Distribution Name: Univariate Normal
m Parameters: X ~ N(p,X), p € R¥, & € Rkxk
m Probability Distribution Function (PDF):

. 1 _ix_—%f
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m Vector: x = (X1, ..., Xk)

m Distribution Name: Multivariate Normal
m Parameters: X ~ N(u,0?), p € (—oc, ), & € RF*K, positive semi-definite
m Probability Distribution Function (PDF):

k 1 1, rs—1
f(x) = (2w) 2 det(D) " Ze Z—H) =T (x—n)




MATRIX NORMAL DISTRIBUTION

A random matrix X of dimensions T x F that follows the matrix normal distribution

has the pdf

exp(—3tr[E71(X — M)Q™H(X — M)"])
(27) TF/2|Q|T/2|2|F/2 ’

p(X|M, 3, 0) =
where M is the T x F mean matrix, 2 is the T X T row covariance matrix, and {2 is
the F x F column covariance matrix.
The matrix normal distribution is related to the multivariate normal distribution.

X ~ MN7y (M, 3, Q)

if and only if
vec(X) ~ Nye(vec(M), Q2 ® X).




TENSOR NORMAL DISTRIBUTION

—
)

Suppose Y1..... Y, are dependent images that make up the slices of a tensor of order

3 that follows a tensor normal distribution with the following parameters:

X = W1 Frnld = Vi, Ve, A, B, C =84,

where X = Y7.....Y,isofsize T x Fxr,G=Vi.....V,isofsizet xfxr, A=Pis

ofsize T xt, B=D isofsize f xF, and C =2 is of size r X r.
Additionally, there will be the row and covariance matrices of Y;, X and W,
respectively.

We assume that X follows a tensor normal distribution, written as
X~ NT,FJ(% xA,C.D, X, T 0).
The probability density function is

TF

TFn L
2

, —Fn —Tn
fa(X) = 2m) 2 [X] 2 [¥] 2|0
1

exp{—= (¥ — ABC) x1..3 (0}=1 U] !) x1...3 (X — ABC)},

). J

where o denotes the outer product and X denotes the tensor product.
A useful property of the tensor normal distribution:

vec(B x {A,C,D}) = (D® C® A)vec(*B)
~NrE (DR CRA)vec(B), 2 ¥R )




ONE-SAMPLE PROBLEM @

Suppose we have n i.i.d. tensors, denoted as X;, i = 1, ..., n, that follow a tensor

normal distribution. For a one-sample hypothesis testing problem, we assume that A,
C, and D are fixed and computed.

Assumptions:

m One population:

XEi=BxACDI}¢,i=1,..n
X~Nre,(BxACD X VQ)
= vec(B X A, C,D) ~ N (DR C X A)vec(B), 2RV @ X)
= (D ® C ® A)vec(’B)

m Row covariance matrix X is T x T, fixed, p.d., but unknown
m Column covariance matrix W is F x F, fixed, p.d., but unknown

m Slice covariance matrix {2 is r X r, fixed, p.d., but unknown

We are testing

Hp : B = Bg
H, : B # By




MAXIMUM-LIKELIHOOD ESTIMATION

We assume that A and B are calculated and fixed. We assume the covariances
matrices X2, W, and (2 are unknown.

Nzabanita et al (2015) derive the maximum likelihood estimates for all of the
parameters of the tensor normal distribution when the mean has the structure

M =B x {A,C,D}.

These methods unfold the tensor into matrices. The model
X~ NT,F!,,(B x {A,C, D}, 2.V, Q)
in matrix form using three different modes as

X1y~ N1 r(AB1)(D®C),X,Q® V)
X2y~ N1 (CBg)(D®A),¥,Q3 1)
X3y~ N, 7r(DB(3)(C® A). QU eY).

The likelihoods for each of the three modes are equivalent. MLEs for all of these

parameters (B(l), B(2). B(3), 3, ¥, (2) are derived.
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ONE-SAMPLE PROBLEM: LIKELIHOOD-RATIO TEST

The likelihood using the mode-1 model with

X 1) ~ N1 (AB(1)(D® C)', 5,0 ® ¥)
Is
L(B{l) |A.. C D X{l),lﬂ X{l),n)

exp(—5 >i—1 tr{(2® ¥)~'[X(4); — AB(1(D® C)')'S~![(D ® C)(D ® C)']})
(Q'TT)TF”]/ng ® @lnT,’Q’E’TFer )

We want to compute the likelihood-ratio test statistic

ﬁ_ﬂ
LH,
QAIXJ‘i’An_TEA nFr
=(z—=-)2(5)2




ONE-SAMPLE PROBLEM: —
MAXIMUM-LIKELIHOOD ESTIMATION )

By = %(A’E*A)—l ZA’E_l}((l)J(Q V)" I(D®C)(D®C) Qe ¥)(DeC) !
i=1
= (A'STA)TIA'STIX () (Qe V) H(DRC)(D®CY(Qe ¥) (DR C) !

>oim1(X1y,i —AB)(D® C))(Q® ‘i’)_i(Xu)J — AB(1)(D ® C)')

¥ —
nFr

‘ij _ Z?:l(X(Q}! - CB(Q}(D X A}!),(Q ® E}_l(X(g}S; — CB(Q}(D & A)"}
nlr

ﬁ _ Z?:l(x(g},l _ DB(E)(C & A)’),(ll! & E)_i(X{B)J — DB(EJ (C & A)‘F)
nTF

o e Fal

An iterative algorithm is used to estimate ]3(1), Y, W, and (L.




ASYMPTOTIC DISTRIBUTION OF -2 LOG A

Because we are testing

Ho : B = By
H,: B+ By

we have a simple null hypothesis. Therefore, by Wilks' Theorem, as n —+ oc,

—2log A ~ x?ﬁ.




ONE-SAMPLE PROBLEM:
FORMULATION AS REGRESSION PROBLEM

E))

Recall
n

Bij) = (A'Z7TA)TIY A0 TIX () (2@ ¥)TH(DRC)[(De C)(Qe ¥)(DeC)| !
—1

Then we can formulate the following regression problem:

Vec(}_({l)) = (D®C ® A)vec(B(q)) +vec(E)
N, —— e— > g S —
¥ X 3 3

If the errors are not homoscedastic (vec(E) ~ N(O, %ﬂ ® ¥ ® X)), where none of X,

W, and (2 are equal to crgf'), then we take the Cholesky decomposition to get a matrix
C such that

1
C'C=(=0UX) 1=n"letlgx!
n
and process like we would for generalized least squares.
CVEC(X(I)) = C(D® C® A)vec(B(1)) + Cvec(E)

Test statistic: F ~ Fif 7R —tfr




ONE-SAMPLE PROBLEM: SCORE TEST )]

Under Ho, X; = Bo x {A,C,D}+ €&

L(B(1)|A, C, D, x(1),15 --» X(1),n)

exp(—3 2 tr{(Q®@ V)" [X (1), —AB(1)(D® C)'S7}[X(y); — AB(1)(D ® C)']})
(’2?’1’) TFm/2|Q ® 1I;|nT/2|E|TFr/E

[P ) f
I(B(1)|A, C, D, x(1),15 - X(1),n) = ~5 D Hvee(X(1),i)’ — [(D ® C @ A)vec(B(y))]'}
i=1
Q'ev e E—l) x {vec(X(y ;) — (A ® D ® C)vec(B(y))}]

TF F
S log(27) — — |og|Q W] — u log |3|

—(D'QleC' v loA'R" l)Z[Vec(X 1).i)) — (D ® C ® A)vec(Byy))]
i—=1
0?1

2
E)‘B(l)

= _nD'Q Do C'¥F ICeA'S1A)




ONE-SAMPLE PROBLEM: SCORE TEST STATISTIC

UB(1).0)' I(B(1),0)~ " UB(1),0)

= {Z[VEC(X(“,;) = (D RCRX A)VEL‘(B(U,(})]}’ X
=1

1 _
n
n

(D “[vec(X(1),) — (D ® C ® A)vec(B(1y,0)]}
i=1

i
~ Xtfr




ONE-SAMPLE TESTS: SIMULATIONS @

Model:
X=Bx{A . CD}+¢&

Simulated Data (under Hy : B = Vp,...V):
X ~Nre,(Bx{A C,D} X,V Q)
where

is a 10 x 10 x 3 tensor (T, F = 10, r = 3),

is a 10 x 4 arbitrary, orthogonal matrix (t = 4),

is a4 x 2 x 3 tensor, with each slice consisting of the 4 x 2 matrix Bp
is a 4 X 2 matrix consisting of independent N(O, 102) observations,

2 x 10 arbitrary, orthogonal matrix (f = 2),

is a 3 x 3 arbitrary, orthogonal matrix,

is a 10 x 10 x 3 tensor with Nt g (0.2, ¥, Q) distribution,

is a 10 x 10 arbitrary symmetric, positive-definite covariance matrix,

is a 10 x 10 arbitrary symmetric, positive-definite covariance matrix,

e MMmdP Te o

is a 3 x 3 arbitrary symmetric, positive-definite covariance matrix.

¥Ve run 10,000 simulations under Hp : B = Bqg, ...Bp using MATLAB.




ONE-SAMPLE TESTS: SIMULATION RESULTS

LRT (—2log A ~ x%ﬁ):
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k-SAMPLE PROBLEM

Assumptions:

m Population g: g =1, ..., k (We have k independent populations)

g
¥ =BgxA,C,D+€,i=1,..,Ng(D> Ng=N)
i—1

X% ~ Np,gr(Bg x A,C,D, %, ¥, Q)
= vec(Bf x A,C,D) ~ Npg(D @ C ® A)vec(B;),. 2@ ¥ @ X)
= (D ®C ® A)vec(Bg)

m Common A, C, and D for all populations

m Row covariance matrix X is T x T, fixed, p.d., but unknown

m Column covariance matrix ¥ is F x F, fixed, p.d., but unknown
m Slice covariance matrix {2 is r x r, fixed, p.d., but unknown

We are testing

i D =8 = .. = Bi
H; : At least one of By, ..., By is different.




k-SAMPLE PROBLEM: MAXIMUM-LIKELIHOOD ESTIMATION @)

Let ni...., ng denote the total cumulative sample size up to and including sample k.
n= Zle n;, and B(l}gg, g =1..... k denote the B(l} value corresponding to group g.

B(1),1 = j—l(A’E‘lA)‘l Y ATTIX(1,i(200) (D C)[(DeC) Qe ¥)(DeC)”

=1
= (A'ST'A)TTA'STIX (1 (29 P) T (DR C)(DRC)(QeT)(DeC)
n
" 1 £
Bi)g= A's7TA)™ Y ASTIX)(QeT)TH(D®C)x
ng — Ng—1 f:”g_l'l'l

(DRC)( Qe T)(DeC)™?
= (A’S71A)TTA'STIX (1) (Q® ¥)H(D ® C)[(D® C)' (2 ® ¥)(D ® C) 2,
g=2,....k




k-SAMPLE PROBLEM: DISTRIBUTION OF TEST STATISTICS

m Likelihood-ratio test (asymptotic distribution):
2
—2log A ~ X(k—1)tfr
m Regression problem framework: Test statistic F ~ Fitf kTFr—ktfr
m Score test: Cannot conclude theoretically that U(BEI))’E} U(BEI)) ~ x?ﬁ,
(1)

asymptotically as ny — oo

‘ B —1 . n
exactly or U(Btl})”Bgl} U(B(1)) ~ X{k—1)tfr
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TRAIN VIDEO DATASET

Publicly available YouTube video at the following link:
https://www.youtube.com /watch?v=tNT2iQZ1Wil.

32-minute video consists of Amtrak, BNSF, and Metrolink trains in Santa Fe
Springs, CA taken on 12/13/14.

We take three segments of the video consisting of a BNSF train, single-stack
train, and double-stack train.

Each segment is 10 frames, and each image, X;, i = 1.....n, is 71 x 101 in size.
Following the work of Lock et al (2011), we scale our data so that all 30
observations have the same total variability. Letting X; be the mean and s; be the
standard deviation of the entries of X;, define

X; — Xx;

5

scaled __
Xsealed

We scale all of our 30 images based on the above definition.




APPLICATION TO TRAIN VIDEO DATA: p=me

DIMENSION REDUCTION AND INFERENTIAL PROCEDURES @)
m For each video segment, we have the tensor X, i = 1,...,40 of size 71 x 101 x 10

which incorporates all 10 frames from each video. Thus, we have three tensors.

m Using obtained values of t = 25 and f = 30 using previously established methods,
we compute the Tucker decomposition on the first tensor (segment 1's images) to

calculate A, C, and D.

m With these fixed and estimated, apply inferential procedures on dataset of 3
tensors.

m Three types of problems: one-, two-, and three-sample problems
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APPLICATION TO TRAIN VIDEO DATA: ONE-SAMPLE TESTS

We wish to determine if all three video segments have the same mean, i.e. have the
same mean of B x {A,C,D}. With A, C, and D being estimated and fixed, we want
to see if they all have the same value of B. To make this determination, we test the
hypotheses

Ho : B =Bo
Ho : B # Bo,

where we will set Bp to be the set of images for video segment 1 (BNSF train).




APPLICATION TO TRAIN VIDEO DATA: ONE-SAMPLE TESTS

Test Dist. of Test Statistic Critical Test Statis- | Decision
Value tic
(. = 0.05)

LRT —2log A ~ X2 7.7026  x | 5.7513 x | Reject Hp

(asympt. 103 104

dist.)

Score U(Bo)'I(Bo)~*U(Bop) 7.7026 x | 1.4488 x | Reject Hp

Bk 103 10
Regression F ~ Fitr TFr—tr 1.0286 7.4041 Reject Hp

n=3

m Bo = Bg (1)

mF=T7, F=18],r=10
mf=235 f=30, =10
=

(]

;




APPLICATION TO TRAIN VIDEO DATA: TWO-SAMPLE TESTS @

We seek to determine if there is a significant difference in the means of the images for
the video segment of the BNSF train, and the video segment of the single-stack train.

m Population 1: images of BNSF train video segment (n1 = 1)

m Population 2: images of single-stack video segment (n2 = 2)

With A, C, and D being estimated and fixed, if the mean for population 1 is
B1 x {A,C,D} and the mean for population 2 is Bo x {A,C,D}, then we want to
see if By = Ba. Therefore, we test the hypotheses

Ho:Bi =By =B
Ho : By # Ba.




APPLICATION TO TRAIN VIDEO DATA: TWO-SAMPLE TESTS [-

Test Dist. of Test Statistic Critical Test Statis- | Decision
Value tic
(a = 0.05)
LRT —2log A ~ x% 7.7026 x | 1.1928 x | Reject Ho
(asympt. 103 10°
dist.)
Regression F ~ Foir oTF—2:f 1.0202 8.4154 Reject Hp

Bo = Bg,(1)

T=YL F=1, r =10
=26 F =30 r= 11
=2 k=2




APPLICATION TO TRAIN VIDEO DATA: THREE-SAMPLE TESTS @

We seek to determine if there is a significant difference in the means of the images for:

m Population 1: BNSF train video segment (n; = 1)
m Population 2: single-stack video segment (n2 = 2)
m Population 3: double-stack video segment (n3 = 3)
With A, C, and D being estimated and fixed, if the mean for population 1 is
B1 x {A,C,D}, the mean for population 2 is Ba x {A,C.D}, and the mean for
population 3 is B3 x {A, C,D}, then we want to see if By = Ba = B3. Therefore, we
test the hypotheses
Ho :B1 =By =By =B
Hp : At least one of Bi. B3, B3 is not equal.




APPLICATION TO TRAIN VIDEO DATA: THREE-SAMPLE TESTS

.J

=

[

1k

E

Test Dist. of Test Statistic Critical Test Statis- | Decision
Value tic
(a = 0.05)
LRT —2log A ~ X{4_ 1y 1.5286 x| 6.5350 x | Reject Hp
(asympt. 104 104
dist.)
Regression F ~ F3tt 3TFr—3tfr 1.0165 6.5293 Reject Hp
[ | BO = BD,(l)
B T=7lF=101, r =10
mit=25 Ff=30, r=10
mn3=23 k=23
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DISCUSSION OF RESULTS '(.,»

"Regression-based inference test, which has the most solid mathematical
support, serves as the reference test. This test rejects H, for one-, two-, and
three-sample problems, which is the expected result.

= Asymptotic distribution for LRT and score test (one-sample) reject H,,.




FUTURE WORK

Integration of methods with feature detection methods in computer vision
“Deep learning

=Unsupervised machine learning

Dense <t e » R I ()
Opt]cal flow B e M S S5 -] _ .*:',_:' , “ A i ”:-,VJ;.:',,-‘”M-: L.t b

Canny edge
detection

Frame
difference
+ optical
flow

Motion
track of
train.




FUTURE WORK @

“Develop hypothesis testing procedures without unfolding tensors

"Computational issues, especially with Kronecker products of covariance
matrices

"Inferential procedures for other tensor distributions, including
nonparametric methods

" (Goodness-of-fit tests for tensor distributions

=Using other tensor decomposition methods, such as CANDLECOMP and
PARAFRAC

"Hierarchical hypothesis testing
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ONE-SAMPLE LIKELIHOOD-RATIO TEST: -
DERIVING DISTRIBUTION OF TEST STATISTIC i

Test statistic:

_ SUPB(1,0 L6 %) 1) _ (24 @ Wa ‘)%(&)”Tﬁ
SUpp 4, L(6|X(1y,i) 20 ® Yo 2o

where

S 1[X(1),i — AB(1)(D ® C))][(Qa ® ¥a) " [X(1),i — AB(1)(D ® C))]’

XA = nFr
By S oh 1 X(2),i — CB(2)(D ® A))](Q4 ® £a)"1[X(g).i — CB(2)(D ® A)")]/
nTr
= Soh 1 X3y, — DB(3)(C®A))](¥a ®34) " [X(3y; — DB(3(C®A)")/
nTF
S, — S 1 X(1).i — AB(1),0(D ® C))](Q ® ¥o) "1 [X(1),i — AB(1),0(D ® C))/
nFr
o — S o1 1[X(2).i — CB(2).0(D ® A))](Q0 ® X0) "1 [X(a).; — CB2) 0(D ®A))]
nTr
Go — >0 1[X(3),i — DB(3,0(C ® A))](¥o ® 30)"1[X(3),; — DB(3),0(C® A)f)]"_

nTF

1
ol




ONE-SAMPLE LIKELIHOOD-RATIO TEST:
DERIVING DISTRIBUTION OF TEST STATISTIC

®

Dependency issues in numerator and denominator:

S [X(1),i—AB1,(DRC))(a@¥a) 1 [X(1),i—AB(1),(DRC)")]’

(—EA)H? = [ nFr )HZFF
N [X(1),i—AB(1),0(DRC))](2®@¥0) "1 [X(1),i—AB(1),0(DRC)")]’
nFr

! [ Xy.i—AB1(D® C))]($a ® ¥a)"1[X (1) — AB1)(D® C)))’ ofr |

= ( i=1 _ _
i1 Xy, — AB(1),0(D ® C))](€20 ® ¥o) 1 [X(1),i — AB(1),0(D ® C))J




RELATIONSHIP TO WISHART DISTRIBUTION

Theorem 7.8.4 of Gupta and Nagar (2000): Let S = XAX', where X ~ Np 5(M, %, Q).
The necessary and sufficient condition for S to be distributed as Wp(t, 3, Z_IMAM’)
is that AQA = A and rank(A)=t > p.

Corollary 7.8.4.1 of Gupta and Nagar (2000): The necessary and sufficient condition
for S = XAX’, where X ~ Np.n(0,3,Q) to be distributed as Wp(t, X) is that
AQA = A and rank(A)=t > p.




ONE-SAMPLE SCORE TEST:
DISTRIBUTION OF TEST STATISTIC

Theorem
The score statistic

U(B(l},ﬂ)”(B(U,n)_l U(B(1),0)

= {3 Ivec(X(1y,1) — (D ® C® A)vec(By)]} x
=1

1
—“@ Do 'Dina v icc’v o) IcrigrTIAA'ETIA) A/
- |

n

Z[vec(X(l),;) —(D®C ® A)vec(B(y))]
i=1

follows a xfﬁ, distribution.




ONE-SAMPLE SCORE TEST: =
DISTRIBUTION OF TEST STATISTIC @)

Proof.
Because X(1),; ~ N7 r (B x {A,C,D}, ¥, ¥, Q) under Hy, we know that
VE(:(X(U’,-) ~ NTFr((D RC® A)VEC(B(lLD), DRV R E)
vec(X(1),i)) — (D ® C® A)vec(B(1)0) ~ N7r(0,2Q ¥ ®@ X))

n
D vee(X (1)) — (D ® C® A)vec(B(1),0)] ~ N7£ (0,2 ® ¥ ® nX).
i—1

Let A denote the constant term in the middle of the score statistic, and ¥ denote the
column covariance matrix of Zle[vec(X(l)___,-) — (D®C ® A)vec(B(1),0)]- By
Theorem 7.8.4 in Gupta and Nagar (2000), because we set

1

A=-(Q Do D) ID'O e v icc’'vIo)IcrTigETAA'ETIA) AN
n

=08 ¥ n,

then

ATA = A,

and we can conclude that U(B[I)!G)’I(B(I}ﬁ)_l U(B(1),0) ~ N [



k-SAMPLE SCORE TEST: DISTRIBUTION OF TEST STATISTIC

The score statistic U(B(1),0)"/(B(1).0) " U(B(1),0) is

U(E{l},ﬂ),;(ﬁ(l},ﬂ)_lU(E(l),ﬂ)

Mg
= {D _Ivec(X1).i) — (D ® C® A)vec(B(1) 0)]}' X
i=1
1
— (@ 'DD'e D) DO g rTicCc’yTic) T Iy ig T AA/ETIA) AR
Nk

nj

) vec(X (1)) — (D ® C ® A)vec(B(y) o)l
i—1

follows a xfﬁ, distribution exactly.




k-SAMPLE SCORE TEST: DISTRIBUTION OF TEST STATISTIC

Attempting to use Theorem 7.8.4 of Gupta and Nagar (2000), setting

1
A= —(Q DO 'D) Dol icc'ric) Icr g tAA'ETA) LA
N

P=n(QeU¥eX) - DD D) Do lecvc) Icv IgAA'S A

then AWA £ A, we cannot conclude that the score statistic follows a follows a X?ﬁ
distribution.




LIKELIHOOD-RATIO TEST (@)

Likelihood function:

m How likely particular values of statistical parameters are for a given set of
observations

m Equal to joint probability distribution function (pdf)
L(6|x) = P(x]0)

m Let x1,...,xn be independent and identically distributed (i.i.d.) data with pdf
p(xi|@),i =1,...,n. Then

L(6]x) = P(x]8) = T ] p(xil0).
i=1




LIKELIHOOD-RATIO TEST

Likelihood-Ratio Test:

supgco, L(0) _ L(Bolx)

Mx) = supgeo L(6)  L(6]x)

Reject Hp if A(x) < c.

Wilks" Theorem:
Under Hgp, as n — oo,

—2log A ~ ng,
where df = dim(©) - dim(©g).




REGRESSION-BASED TEST )]

Model:
vec(X (1)) =(D®C®A)vec(B(q)) + vec(E).
\-._..v_-' ‘-—-;(-—-*‘*-«_V_J e et
Y 8 €

We can rewrite Hy : B = By as

CBE=10
C = :-".rﬁ* _"lrfr]
B_ vec(B)
~ |vec(Bo)

CB = vec(B) — vec(Bp) = vec(B — By) = 0.




REGRESSION-BASED TEST
Suppose, under Hp,

Xi~ Nt rr(Bx{A,C,D},X,¥,Q),
where X, ¥, and (2 are positive-definite, Then

_ 1
X~ NT.F,I’(B X {A:IC:ID}-J _E*'lpvﬂ)
: L.

_ 1
= vec(X) ~ NTr(D® C® A)vec(B),2@ ¥ ® —X)
n

1
= vec(E) ~ N7 (0,2 @ ¥ ® —X).
n

We assume that ¥, ¥, and (2 are all unknown. We estimate these covariance matrices
using their MLEs.

S X1y —AB)(D ® C))(2a ® ¥a) X (1), — AB1)(D ® C))I’

s
nFr
. YiiX(@2),i — CB@)(D® A))](24 ®34) " [X(z),i — CB)(D® A))]
‘II =
’ nTr
g, _ 2i=1X(),i ~DB3)(C® A))(Va ® 24) " [X(3),i — DB3)(C ® A))]'
A —

nTF

®




REGRESSION-BASED TEST

Because X, ¥, and 2 are all positive-definite, we can take the Cholesky decomposition
of the inverse of the covariance matrix of vec(Y), Q2 ® ¥ ® X, and get a matrix C
such that

C'C=Q¥QR %2)—1 = leulgnzl
Then, we have
Y* = X*B 4 u*
Cvec(X) = C(D ® C ® A)vec(B) + Cvec(&).
The generalized least-squares solution of 3 is
B* = (X'vIx)y"ix'v-ly.

Setting X = (D®C®A), V=0 ¥ ® %, and Y = vec(X),
B* = vec(B)

= [(D'C' AN I¥ e H)DRCRA) (D' ®C ®A")]x

[Q_l QU ® nZ_l]vec(é’f’)]

=[(D'Q ' DeC' v ICeAnE A I DO e C'¥v ! @ A'nE " vec(X).




REGRESSION-BASED TEST

From (3.37) of Seber and Lee (2003),

B =B+ (XX ) TTATTAXTXT) TIATT (e — AB)
=[(D'QIDC'TICAnE"TA)ID'Q @ C'U~! ® A'nE ! vec(X)

+ (D' IDCVIC AnE A Hslls(D'Q D C'¥YIC® A/nE 1A)] Ly
[vec(Bo) — hx[(D'Q DR C'FIC A 1A) I D'Q 1@ C'v 1 @ A nE " vec(X)]
=[(D'Q ' DC' ¥ ICe A 1A DO 1@ Cc'v!® A nx"vec(XF)

+ [vec(Bo) — [(D'Q D C'¥ ICce A'nx 1A ID'Q e C’'v 1 @ A'nELvec(X)]
= vec(Bp).

Following from Section 4.3 of Seber and Lee (2003), we want to test

Ho : I vec(B) = vec(Byp) .
N N—— ——
A 8 £




REGRESSION-BASED TEST )]

Under Hp,

RSSH = |IY = X*Bull*
— ||vec(X) — C(D ® C ® A)vec(Bo)||>.

Under H,,

RSS =||Y — X*f||*> = (n— p)S?

= |[vec(X) —C(DRCRA)(D'Q D C'v IC®Anx"1A) 1x
D'Q e C' ¥ g A'nE ™ vec(X)||?

= |jvec(X) — c(D(D'Q D) DO e Cc(C'vIO)"ICT @ A(A/nE"TA) A T
Note that in our problem, X* = C(D® C® A) is a TFr x tfr matrix, so n = TFr and

p = tfr.
Also, A = I, so g = p = tfr. We have

RSS
n—p
[vec(X) — C(D(D'Q D) 'D'Q 1@ C(C'vV1C) IC’'UV 1 A(A'nEtA) 1A'

TFr — tfr

s§2 —




E))

REGRESSION-BASED TEST

Therefore, the F-statistic is
_ (RSS4y —RSS)/q (AZ — S TAXK™ X*y LA Al — o) N
~ RSS/(n—q) qS2 Brr
B (||vec(X) — C(D ® C ® A)vec(By)||?/tfr
|lvec(X) — C(D(D’'Q—1D)-1D'Q- 1 @ C(C'PY-1C)"1C'¥—1 @ A(A'nE-1A)~1A'nE—1)vec(
||vec(X) — C(D(D'Q'D)'D'Q '@ C(C'v 1C) IC’'T 1@ AA'NETA) 1A'NETT)
||vec(X) — C(D(D'Q-1D)~1D'Q-1 @ C(C'P—1C)"1C'T-1 @ A(A'nE—1A)~1A’'nE—1)vec(

~ Ftﬁ'_, TFr—tfr-




SCORE TEST

m Assesses constraints on statistical parameters based on the gradient of the
likelihood function, known as the score, evaluated at the hypothesized parameter
value under the null hypothesis.

m Only the distribution under the null hypothesis is required

Test Statistic: . R )
U'(60)1~*(80) U(b0) ~ X%,

where k is the number of constraints imposed by Hp,

- dloglL(6
Score : U(fBy) = Ggag 01x)

92 log L(6p|x)
0606’

Fisher Information : !(éo) = —E]|

]




