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APPLICATION:ANALYSIS OF POPULATION OF IMAGES

• Suppose we want to test a treatment for Alzheimer's disease.

• Data: Brain images of two groups of Alzheimer's patients with multiple images per
patient taken over time

Two groups: treatment and control

Two questions:

How do we analyze these high-dimensional images (120 x —277,000) collectively?

How do we determine if the treatment is effective?



APPLICATION TO TRAIN VIDEO DATA

BNSF train car Single-stack train car Double-stack train car

Two questions:

• How do we reduce the dimensions of these video frames?

How do we detect significant differences between and within video
segments?
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2. Inferential Procedures

General Framework

Likelihood-Ratio Test

• Score Test

• Regression Based Inference

Simulations
1 Application to Train Video Data

3. Future Work



TENSOR METHODS

Tucker decornposition of a three-way array:

/".

C'

P Q 

X g x i A X2 B Xs C =  > 4 > 4gpqr ap 0 bq c r = [ A.B. C]
p=1 q=1 r=1
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 > 

   4  4 
gpqraiphjcickr for = 1, = 1, .1 A 1 - -

p=1 q=1 r=1

Question: Can we develop hypothesis testing procedures for this framework, where C
rneasures the ternporal correlation between frames?



I MODE-n UNFOLDINGS

Tensors can be unfolded into various matrices that contain all of the elements of the
tensor.

The best way to understand how this works is by considering an example. Let the
frontal slides of a tensor X G 2 be

1 4 7 101 113 16 19 22
X1= 2 5 8 11 1 . )(,) = / 14 17 20 23

3 6 9 12] L15 18 21 24

Then the three rnode-n unfoldings are

4 7 10 13 16 19 22
2
[1

5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

1 2 3 13 14 15
4 5 6 16 17 18

= 7 8 9 19 20 21
10 11 12 22 23 24

1 2 3 4 5 ... 9 10 11 12
13 14 15 16 17 ... 21 22 23 24



I GAUSSIAN DISTRIBUTIONS

• Scalar: x
• Distribution Narne: Univariate Normal
• Parameters: X 1(p E), G E G Etkxk

• Probability Distribution Function (PDF):

— ii)2
f (x) =  e 2cF2

v/27For2

• Vector: x = ...,xk)

• Distribution Narne: Multivariate Normal
• Parameters: X N(4,0-2), G (—cc; cc), E Rkxk, positive semi-definite
• Probability Distribution Function (PDF):

ie._
L
_ ju yeE-1(x

f(x) = (2-0 2 det() 
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I MATRIX NORMAL DISTRIBUTION

A ranclom matrix X of dimensions T x F that follows the matrix norrnal distribution
has the pdf

p(XIM,E,c0 = (2.73-)TF/21c211721E1F/2

exp(- -tr[E-1-(X — Mg2-1-(X —

vvhere M is the T x F rnean matrix, E is the T x T row covariance rnatrix, and r2 is
the F x F column covariance matrix.

The matrix normal distribution is related to the rnultivariate norrnal distribution.

if and only if

X MNT,F (M, E, ..c2)

vec(X) NTF(vec(14), ®E).



TENSOR NORMAL DISTRIBUTION
Suppose Yi..... Yr are dependent images that make up the slices of a tensor of order
3 that follows a tensor normal distribution with the following parameters:

X = Y1. .... Y, . = V,. A. B. C =

where X = Yr is of size Tx Fx r, g = Vr is of size tx fx r, A = P is
of size T x t, B = D is of size f x F, and C = is of size r x r.
Additionally, there will be the row and covariance matrices of Yi, and T,
respectively.

We assume that X follows a tensor normal distribution, written as
X NT,F,T 0.11 x A, C. D, E, c2).
The probability density function is

— fx (x) (270 Tr-r 1E1 —2Fn —2Tn 11_2
2
TF 

1
exp{-- B 1_(X — AC) X 1.3 1..,3 (X - ABC)},

2

where o denotes the outer product and x denotes the tensor product.
A useful property of the tensor normal distribution:

vec(Q-1 x {A. C. D}) = (D C A)vec(93)

NTFr ((D C A)vec(93) E)



I ONE-SAMPLE PROBLEM

Suppose we have n i.i.d. tensors, denoted as Xi, f= 1. ,.„ fi r that follovv a tensor
normal distribution. For a one-sample hypothesis testing problem, we assume that A,
C, and D are fixed and computed.
Assumptions:

• One population:

Xi = x A, C, D = 1, n

NT ,F x A, C. D, E,

vecP x A. C. D) NTF,-((D C A)vec-013). c-2 kIf E)

= IS) C A)vecP)

• Row covariance matrix E is T x T, fixed, p.d., but unknovvn

• Column covariance matrix 11( is F x F, fixed, p.d., but unknown

• Slice covariance matrix c2 is r x r, fixed, p.d., but unknown

We are testing

Ho : B = Bo

: B / Bo



I MAXIMUM-LIKELIHOOD ESTIMATION

We assume that A and B are calculated and fixed. We assume the covariances
matrices E, Alf, and S.-2 are unknown.

Nzabanita et al (2015) derive the maximum likelihood estimates for all of the
pararneters of the tensor normal distribution when the mean has the structure
.A4 = x {A, C, DI.

These methods unfo/d the tensor into matrices. The model

X NT.F,„,.(B x {A. C. DI, E, T. f2)

in matrix form using three different modes as

X(1) "a NT.Fr (AB (1) (D CY. E. Q T)

X(2) "a NF, Tr(CB(2)(D O. AY. Ijr, 1./ .E)

X(3) A I ,TF (DB (3) (C AY, 12, lir E).

The likelihoods for each of the three modes are equivalent. MLEs for all of these
parameters (B(1), B(2), B(3), E,II-f,c2) are derived.



I ONE-SAMPLE PROBLEM: LIKELIHOOD-RATIO TEST

The likelihood using the rnode-1 rnodel with

X(1) NT,Fr(AB(1) D CY, a

is

L(B(1) IA, C, D. x(0,1_,

exp(- - >7_1 trf (12 0 W)-1[X(1),i — A130) (D Cr/E-1[(D CRD CYR)

(270 7Trn/2 ,0.11/1012 1E1 TFr/2

We want to compute the likelihood-ratio test statistic

A
LHD

LH.3

rrT nFr
fr ) 2

5:20 TO E0



ONE-SAMPLE PROBLEM:
MAXIMUM-LIKELIHOOD ESTIMATION

_ 1 (A.FE-1A)-1 ...: A/E-1x(1),i(s1 —4)) 1(D C)[(D
N

i=

= (AfE-1A)-1-A1E-1x(00-2 ® Trio) C)[(E)
=  

- AB(i)(D CY)/(O 0-1(X(1),/

n Fr
fi

= 
E—i(X(2),/

(-.2 ELI (X(3),i 

CB(2)

DB(3)(C

AY)/(O 'E‘ )-1(X(2),i

n Tr

AY)/(lif '')-1(X(3),i

nTF

An iterative algorithrn is used to estirnate h(1), 1, and

CY(c2 41)(D C)]-1

CY(c-2 II-0(D C)]-1

— AB(1)(D C)f)

— CB(2)(D 0 AY)

— DB(3) (C AY)



I ASYMPTOTIC DISTRIBUTION OF -2 LOG A

Because we are testing

Ho : = 130

H, tio

we have a simple null hypothesis. Therefore, by Wilks' Theorem, as n cc,

—2 log A



I ONE-SAMPLE PROBLEM:
FORMULATION AS REGRESSION PROBLEM

Recall

E (1) (A/E-1A)-1 >:d Aio--1-X(1)(C2 klf)-1(D C)[(D COI® klf)(D (S) CA-1

Then we can formulate the following regression problern:

vec(X(0) = (D C 0 A) vec(B(1)) +vec(E)

X

If the errors are not hornoscedastic (vec(E) 1c2 tr 0, E), where none of E,
/7

T, and c2 are equal to o-2/), then we take the Cholesky decomposition to get a matrix
C such that

C/C=(-
1
c20111

n
E) I = nc-2 0 III 0 E

and process like we would for generalized least squares.

Cvec(X(1)) = C(D C A)vec(B(1)) Cvec(E)

Test statistic: F Ftfr,TFr-tfr.



I ONE-SAMPLE PROBLEM: SCORE TEST

Under Ho, (16 = eo x {A, C, E

L(B(1) A. C. D,x(1),l,

E7_1 trf(ci 0 40-1 [X(1),i — AB(l)(D CrE-1 [X(1),i — AB(1)(D CY]l)

— (27) TFrnit2 IQ 0 IF In 172 IE I Inicrii2

n
i(B(1)1A1 D, Nil,n) = —2 ERvec(X(1),¡)/ [(D 0 C A)vec(B(1))nx

0-2-1 (s0E-1 E-1.,) x fvec(r(i),i) — (A D C)vec(13/(1)))]

nTFr nT nFr
 log(27) %PI   log El
2 2 2

(B (1)) =   = (Dicr CIT-1 0 A1E-1) 1::Ivec(X(1),i) — (D C A)vec(B(0)]
OB(i) i=1

021
  —n(DicrD Cikli—j-C
013 

i-
1)

/(B(1)) = —E[—n(Dq2-1-D C1111-1C IS) A'E-1A)] = n(D1Q-1D C141-1C A'E-1-A



I ONE-SAMPLE PROBLEM: SCORE TEST STATISTIC

LI(B(1),0)11(B(1),0) 1 U(B(1),0)

IENtec(X(1),I) — (s) C A)vec(B(1),0]}'
i=

n

{E[vec(X(1),i) — C A)vec(B(1),o)]}

(D• 0 G! i (C•f — —

i=1

f'-̀
2
X fir



I ONE-SAMPLE TESTS: SIMULATIONS

Model:
= B x {A. C, DI E

Simulated Data (under Ho 13 = Vo. ,„1.10):

vvhere

X NT,F,r(i3 x {A, C D},E,111,1-2)

X is a 10 x 10 x 3 tensor ( T, F = 10, r = 3) ,

A is a 10 x 4 arbitrary, orthogonal matrix (t = 4),

Bo is a 4 x 2 x 3 tensor, with each slice consisting of the 4 x 2 matrix Bo

Bo is a 4 x 2 matrix consisting of independent N(0,102) observations,

C is a 2 x 10 arbitrary, orthogonal matrix V = 2),

D is a 3 x 3 arbitrary, orthogonal matrix,

E is a 10 x 10 x 3 tensor vvith NT.F,,(0,E,W,Q) distribution.

E is a 10 x 10 arbitrary symmetric, positive-definite covariance matrix,

IP is a 10 x 10 arbitrary symmetric, positive-definite covariance matrix,

K-2 is a 3 x 3 arbitrary symmetric, positive-definite covariance matrix.

We run 10,000 simulations under Ho : B = B0,...B0 using MATLAB.



I ONE-SAMPLE TESTS: SIMULATION RESULTS

LRT (-2 log A \111/r):

11

T•f-14 111"141"."1-1

IP 2P 211 412 111 111

414111 Elsrils

Regression Test

{F ̂ Ftir, TFr -
rp10;.I pi .4r rp3 

PS

OS • i 2

1 1.011119

Score Test

(U(B0)//(B0)-1 U(B0) 'Th-
X?fr):

rxra f4=1Ekif 114tAortfor kat Ram

aP M 151 1111. II UP

Sr..Pm2.1aisk



I k-SAMPLE PROBLEM

ASSLirlptiOns:

• Population g- : = 1. .,.. k (We have k independent populations)

= rBg x A, C, D = 1, Ng () Ng
i=i

11lp,q,r03g X A, C, D, E, kir, 10

vec(93f x A. C. D) N p rq (D (g) C A)vec(93-g), igE)

= C A)vec(a3g)

• Common A, C, and D for all populations

• Row covariance matrix E is T x TT fixed, p.d., but unknown

• Column covariance matrix is F x F, fixed, p.d., but unknown

• Slice covariance matrix SI is r r, fixed, p.d., but unknown

We are testing

• 131 = = =

• At least one of El..... r-3k is difFerent.



I k-SAMPLE PROBLEM: MAXIMUM-LIKELIHOOD ESTIMATION

Let ni. nk denote the total cumulative sarnple size up to and including sample k.
n ni, and B(1),g, g = k denote the Bo) value corresponding to group g

1
—(AFE-1-Ar AfE-1X(1),i(c2 ® C)[(D CY(c2 kli)(D 0 Cr
n1 1=1

(AFE-1A)-1A/E-1X(1),i(ci kli)-1-(D C)[(D CYM WYD C)]-1-

1
— (A'E-1A)-1 A/E-1X(0,02 C)x

ilg - ng-1

RD CY(c2 0 40(D 0 C)]-1-

= (A/E-1-A)-1A/E-1)(0),g(Q kIf)-1-(D C)[(D CY(S-2 WYD

g = 2, k



I k-SAMPLE PROBLEM: DISTRIBUTION OF TEST STATISTICS

• Likelihood-ratio test (asymptotic distribution):

—2 log A ev

• Regression problern framework: Test statistic F Fkrir,k7Tr-ktfr

• Score test: Cannot conclude theoretically that U(13'‘(1))/I—,1 U(Bi'1))
Bp)

exactly or U(B(1)Y1B( ,1-1) 1_413(1)) -qk-1)tfr asymptotically as nk



I TRAIN VIDEO DATASET

• Publicly available YouTube video at the following link:
littps://wwvv.youtube.corn/watch?v=tNT2iQZ1Wil.

• 32-minute video consists of Amtrak, BNSF, and Metrolink trains in Santa Fe
Springs, CA taken on 12/13/14.

• We take three segments of the video consisting of a BNSF train, single-stack
train, and double-stack train.

• Each segment is 10 frames, and each image, Xi. = n, is 71 \ 101 in size.

• Following the work of Lock et al (2011), we scale our data so that all 30
observations have the same total variability. Letting be the mean and si be the
standard deviation of the entries of X. define

xcaled

We scale all of our 30 images based on the above definition.



APPLICATION TO TRAIN VIDEO DATA:
DIMENSION REDUCTION AND INFERENTIAL PROCEDURES

• For each video segment, we have the tensor Xi. r= 1. 40 of size 71 x 101 x 10
which incorporates all 10 frames from each video. Thus, we have three tensors.

• Using obtained values of t = 25 and f = 30 using previously established methods,
we conipute the Tucker decomposition on the first tensor (segment 1's images) to
calculate A, C, and D.

• With these fixed and estimated, apply inferential procedures on dataset of 3
tensors.
• Three types of problems: one-, two-, and three-sample problems



I APPLICATION TO TRAIN VIDEO DATA: ONE-SAMPLE TESTS

We wish to determine if all three video segments have the same mean, i.e. have the
same mean of 13 x {A. C. D}. With A, C, and D being estimated and fixed, we want
to see if they all have the same value of B. To make this determination, we test the
hypotheses

Ho : B =

Ho : B 80.

where we will set Bo to be the set of images for video segrnent 1 (BNSF train).



I APPLICATION TO TRAIN VIDEO DATA: ONE-SAMPLE TESTS

Test Dist. of Test Statistic Critical
Value
(cv = 0.05)

Test Statis-
tic

Decision

LRT —2 log A ,,-, ‘2tfr 7.7026 x 5.7513 x Reject Ho
(asympt.
dist.)

103 104

Score U(130)//(B0)-1U(130) ,---, 7.7026 x 1.4488 x Reject Ho
,2
k tfr

103 105

Regression F , Ftfr, TFr-tfr 1.0286 7.4041 Reject Ho

• Bo = Bo,(1)

• T = 71, F = 101, r = 10

• t = 25, f = 30, r = 10

• n = 3



I APPLICATION TO TRAIN VIDEO DATA:TWO-SAMPLE TESTS

We seek to determine if there is a significant difference in the means of the images for
the video segment of the BNSF train, and the video segment of the single-stack train.

• Population 1: images of BNSF train video segment (ni = 1)

• Population 2: images of single-stack video segment (n2 = 2)

With A, C, and D being estimated and fixed, if the mean for population 1 is

x {A. C. DI and the mean for population 2 is B2 X {A.C. D}, then we want to
see if B1 = B2. Therefore, we test the hypotheses

H 0 : B 1 = L3 2 —

H : B 1 B2.



I APPLICATION TO TRAIN VIDEO DATA:TWO-SAMPLE TESTS

Test Dist. of Test Statistic Critical
Value
(ci = 0.05)

Test Statis-
tic

Decision

LRT
(asympt.
dist.)

—2 log A v,21-fr 7.7026 x
103

1.1928 x
105

Reject Ho

Regression F ,--, F2tf,27-F-2tf 1.0202 8.4154 Reject Ho

• Bo = Bo,(1)

• T = 71, F = 101, r = 10

• t = 25, f = 30, r = 10

• = 2, k = 2



I APPLICATION TO TRAIN VIDEO DATA:THREE-SAMPLE TESTS

We seek to determine if there is a significant difFerence in the means of the images for:

• Population 1: BNSF train video segnient (ni = I)

• Population 2: single-stack video segment (n2 = 2)

• Population 3: double-stack video segment (n3 = 3)

With A, C, and D being estimated and fixed, if the mean for population 1 is

x {A. C. D}, the mean for population 2 is B2 X {A. C. D}, and the mean for
population 3 is B3 X {A. C. D}, then we want to see if /31 = B2 = B:3 . Therefore, we
test the hypotheses

Ho : = 132 = 133

Ho : At least one of 131.L32. B3 is not equal.



I APPLICATION TO TRAIN VIDEO DATA:THREE-SAMPLE TESTS

Test Dist. of Test Statistic Critical
Value
(a = 0.05)

Test Statis-
tic

Decision

LRT
(asympt.
dist.)

—2 log A ik, .,4,:f, k - 1) tfr 1.5286 x
1 404

6.5350 x
10 

Reject Ho

Regression F ,---, F3 tfr ,3 TFr - 3 tfr 1.0165 6.5293 Reject Ho

• Bo = Bo,(1)

• T = 71, F = 101, r = 10

• t = 25, f = 30, r = 10

• n3 = 3, k = 3



I DISCUSSION OF RESULTS

Regression-based inference test, which has the most solid mathematical
support, serves as the reference test. This test rejects Ho for one-, two-, and
three-sample problems, which is the expected result.

■Asymptotic distribution for LRT and score test (one-sample) reject Ho.



FUTURE WORK

Integration of methods with feature detection methods in computer vision

Deep learning

°Unsupervised machine learning

Dense
optical flow

Canny edge
detection

Frame
difference
+ optical
flow

Motion
track of
train.



I FUTURE WORK

Develop hypothesis testing procedures without unfolding tensors

Computational issues, especially with Kronecker products of covariance
matrices

Inferential procedures for other tensor distributions, including
nonparametric methods

Goodness-of-fit tests for tensor distributions

Using other tensor decomposition methods, such as CANDLF,COMP and
PARAFRAC

Hierarchical hypothesis testing
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ONE-SAMPLE LIKELIHOOD-RATIO TEST:
DERIVING DISTRIBUTION OF TEST STATISTIC

Test stotistic:

LOOIX(1),i) ,O4 4:104 nFr
SLIPB(1),0

 ) 2 ( ) 2A =  
L(OIX(1),i) Q0 ® E0supB{i}

— AE.(1)(D CYWOA 414)-1[X(1)
7
i

riFr

— CA(2)(D (8). AY)]4 (8) tA)-1 [X(2),i

— _A_ 1 (1)(D CY)Y

CA(2)(D

nTr

E7  1 [x(3),i - DA(3)(C AnillifA 4)-1 [x(3),i - DE(3) (C AnY 
nTF

[X(1),i — AB(070(D CY)00 11i0)-11x(i),i

ri Fr

[X(2),i — CB(2),o(D A1100 torl [X(2),i

n Tr

[X(3),i DB(3),0(C Ailffliro (8), to)-1[X(3),i

nTF

— AB(1),o(D CY)Y

— CB(2),0(D

— DB(3),0(C (8), Ay)]/



ONE-SAMPLE LIKELIHOOD-RATIO TEST:
DERIVING DISTRIBUTION OF TEST STATISTIC

Dependency issues in numerator and denominator:

n Fr
 ) 2

E0 E7_1 Exo),i—AB(1),0(DOCY)A004'0)-1[X(1),i—A13(1),j(DOCHY 
nFr

=   
[X (1),i Af3.(1) (D (8) CiliCOA irArirx(1),i - (D CYT

)2,7 [X(1),( — AB (1),0 (D Cncoo — AB(1),0(D Ls) Cyv

E7-1[Xtl),i--A-g(l)(DOCY AO A64 Ar 1 [X(i) (1)(DOC)f )]/ 
nFr

=
n Fr
2



I RELATIONSHIP TO WISHART DISTRIBUTION

Theorem 7.8.4 of Gupta and Nagar (2000): Let = XAX', where X — Np.,(M,E,12).
The necessary and sufficient condition for S to be distributed as Wp(t,E.E-1MA1141)
is that AQA = A and rark(A)=t > p.

Corollary 7.8.4.1 of Gupta and Nagar (2000): The necessary and sufficient condition
for = XAX', where X — Np,n(0,E,12) to be distributed as Wp(t,E) is that

= A and rank(A)=t > p.



ONE-SAMPLE SCORE TEST:
DISTRIBUTION OF TEST STATISTIC

Theorern
The score statistic

U(B(1).0)1/(B(0,0) 1U(B(1),o)

[vec(X(1),i) — (D C 0 A)vec(B(0)ili x
i=1

1
(1-r1D(DT2— ylEari w _i_ C(C),I,_1Cric.„-__10 E-1A(A/E-1A)-1A/E-1)

rr

E[vec(X(i),i) — (D c A)vec(B(1))]
i=i

follows a xk distribution,

1



ONE-SAMPLE SCORE TEST:
DISTRIBUTION OF TEST STATISTIC

Proof.
Because X(i),i NT,FAI3 >c C, DI, E, III, in under HD, we know that

vec(X(1)7i) N7-Fr((D (8) C A)vec(B(070),12 0 W (8) Eji

vec(X(1),i) — ((D C A)vec(B(1),0),-.0 NTF ,c 2 1.1-1 0 E.)

ir? 
Lktec(x,1),i) — ((p ® c A)vec(B(1),o)] NTF(0,1-2 kir nE).
i=1

Let A denote the constant term in the middle of the score statistic, and 11, denote the
cokimn covariance matrix of E7 1[vec(X(1),i) — ((D C A)vec03(1),o)]. By
Theorem 7.8.4 in Gupta and Nagar (2000), because we set

A = —(12-1-D(D'r2-11))-1Erit-2-1 4,-1c(cf,p-1c)-1ciw-
n

= 1-11 n,

then

ATA = A,

and we can conclude that U(B(1).n)14B(1),0)-1 U(B(1),0) X2ncr-

1 A (A1E -I A) 1



I k-SAMPLE SCORE TEST: DISTRIBUTION OF TEST STATISTIC

The score statistic U(1 (1),0)10(1),(0-1UCE(1).0)

(O (1),0)11(E. (1),o) 1 br(1 0.),0)

nk 

= {>:.,‘[vec(X(1),i) — (D 0 C A)vec(0.),13)]If x

(1/-1D(D/11-1.D)-1D/c1-1. E-1A(AIE-1Ar1AtE-1.
nk

nk

:.[VeC(X(1),i) — (D C A)vec(E(1),0)]
i=1

follows a xt2f, distribution exactly.

1



I k-SAMPLE SCORE TEST: DISTRIBUTION OF TEST STATISTIC

Attempting to use Theorem 7.8.4 of Gupta and Nagar (2000), setting

1
A = 1-F 1C(C)W-1C)-1C1111-1 E-1A(A/E-1A)-1.A!

nk

= 0-2 0 .g E) — [D SI— 1 D) 1— I 1 ei C(C/41-1cy1ctip-1 A(AfE-1A)-

then ATA A, we cannot conclude that the score statistic follows a follows
distribution.



I LIKELIHOOD-RATIO TEST

Likelihood function:

■ How likely particular values of statistical parameters are for a given set of

observations

• Equal to joint probability distribution function (pdf)

L(Olx) P(xl0)

• Let x1,...,xn be independent and identically distributed (i.i.d.) data with pdf
p(xilO), = 1, ..., n. Then

L(Olx) = P AO) = x
i=i



I LIKELIHOOD-RATIO TEST

Likelihood-Ratio Test:

stv0E00 L(0) L(Oolx)

supoec, L(0) L(01x)

Reject Ho if A(x) < c.

Wilks' Theorem:
Under Ho, a s n

—2 log A PN-i x3f,

where df = dim(e) - dim(eo).



I REGRESSION-BASED TEST

Model:
vec(X(1)) — (D C A) vec(13(1))+vec(E).

Y X

We can rewrite Ho : = .60 as

CB = 0

C = [Incr lrfr]

B ivec(L3)1
Lvec(130]

CB = vec(8)— vec(130) = vec(B — L30) = O.



I REGRESSION-BASED TEST

Suppose, under Ho,

NT.F.,(8 x {A, C, E, kIr 7 r2),

where E, I. and are positive-definite, Then

X - NT,F,r(Li {A, C, D 
1 

41}7 71E11 Q)

vec(X) NTFr((D C 0 A)vec(B), 11/ 0 1E)

1
vec(E) NTFr(O, 0 kit —E).

We assume that E, if, and 12 are all unknown. We estimate these covariance matrices
using t.heir MLEs.

- AE (1)(D (8) CY)KOA (8) 1-1',4)-1[X(1),i
nFr

— CA(2) (D AYWO4 (8) EA)-1[X(2)/ 
nTr

— DA(3)(C (8) AY)K414 Ar1[X(3),i
nTF

— AE (1)(D 03: C2Y)]/

— Ch(2)(D Ay)]/

— DA(3)(C Any



I REGRESSION-BASED TEST

Because E, and Q are all positive-definite, we can take the Cholesky decomposition
of t.he inverse of the covariance matrix of vec(Y), and get a matrix C
such that

Then, we have

C = - 
1
E)-1 = ‘11-1 t/E-1.

17

= X*0+ u*

Cvec(X) = (E) C A)vec(13) Cvec(E).

The generalized least-squares solution of 0 is

)3* v - 1 x, ) - 1 x. v - 1 y

Setting X = (D C A), V = 11, 0 1E, and Y = vec(X),

)3*= vec(n)
= [(DI C A1)(c2-1 11,-1 17E-1)(D ISE C Arl- [(DI C A'Ax

[c1-1 ‘11-1 nE—I]vec(X)]

= [(D'12-1D Cql-1C A'nE-1A)]-1[D'12-1 CIP-1 AinE-1]vec(X).



1 REGRESSION-BASED TEST
From (3.37) of Seber and Lee (2003),

4t_j = (X*!X*)-1Af[A(X*1X*)-1A/]-1(c —

= [(Ell c2-1D Cl1F-1C Al nE-1Ari[Dirct-1 crip-1 AinE—iivec(x)

▪ RIDIf2-1D C/T-1C AinE-1A)]-16[6[(1:1/11-1D CIP-1C AinE-1A)]-16

[vec(Bo) — irfr[(DIQ-1D \F-1C 0 A' nE-1A)]-1[D/c2-1- (Si CT-1 AinE—Ilvec(it)]

= [(Dic2-1D 0 0 Al nE-1Ar1[Dirr1 
cip—i 0 n- Ilvec(X)

▪ [vec(L3o) — RD'S-2-1D 0 C'T-1C Af nE-1A)]-1 [D'fr 1 (8) C'qr-1 AfnE-1]vec(X)]

= vec(80).

Following from Section 4.3 of Seber and Lee (2003), we want to test

HO : incr vec(B) = vec(L30) .

A .3



I REGRESSION-BASED TEST

Under Ho,

RSSH = 11Y — X*r3i-i112

= 11vec(,-10 — C(D (8) C A)vec(80)112.

Under HaT

R.5.5 = IlY X*)ell2 = (n )452

= 11vec(X) — C(D C AM(D/Q-1D Cilif-1C AinE-1AF1x

[D112-1 (0 CIT-1 AinE-1]vec(X)112

= 11vec(X) — C(D(D/Q-1D)-1-•-•I)/0-,—Si 1 (8) C(CIA-F-1C)-1C/W-1 A(AinE-1A)-1AfnE 

Note that in our problem, X* = C(D (8). C 0 A) is a TFr x tfr matrix, so n = TFr and
p = tfr.
Also, A = itfr, SO q = p = tfr. We have

52 RS5

n — p

lvec(X) — C(D(Df1-2-1D)-1D/Q-1 C(C/k1F-1C)-1CW-1 A(A'nE— riA/ Jr

TFr — tfr



I REGRESSION-BASED TEST

Therefore, the F-statistic is

(RS5u — RSS) q (AO — c)/ [A(X*I X* )-1 A1]-1 (A6 — c)
F =   F

.55 — q) (7.52 qI n-R P

(l1vec(X) — C &A)ve-c(Bo)112/tfr
Ilvec(X) - C(D(D/Q-1D)-1Dif2-1 0 C(C'W-1C)-1C/T-1 0 A(AinE-1A)-1A'nE-1)vec(

Ilvec(X) - C{D(DI S-2-1D)-1Dii1-1 (8) 0(01W-1C)-1CiT-1 0 A(AinE-1-A)-1-ArnE-1).

Ilvec(X) - C(DOD'S-2-1D)-1D/,14 1 0 C(C'W-1,c)-1,c/4,-1 0 A(AinE-1A)-1Ar -n 
.r-' -
2_, 1)vec(

r%-' Ftfr , TFr - tfr •



I SCORE TEST
• Assesses constraints on statistical parameters based on the gradient of the

likelihood function, known as the score, evaluated at the hypothesized parameter
value under the null hypothesis.

• Only the distribution under the null hypothesis is required

Test Statistic:

where k is the

U/00)/-1(190)(40)

number of constraints imposed by Ho,

Score : U(eo) =
00

& log L(4101x)

.02 log LC60 lx) 
Fisher information 00) = —E

661001


