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Motivation:

* GMLS allows to reconstruct functions/functionals given samples on scattered data points
* It can be use for data transfer between different meshes / point clouds
* It can be use for meshless discretizations of differential problems

Outline:

* Intro to (Classic) Moving least Square
* Intro to Generalized Moving least Square
* GMLS approximation theory / tools
* Meshless discretization
* A collocation method
* A Galerkin method
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0 . point cloud:
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0 . point cloud:
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0 . point cloud:
" h __ A Nn
X" ={x;};.y CQ

. X . *
. 'y filling distance:
3 = 5 h:=sup inf |x—x;
% . ..’ xc) x,€Xh

. ; separation distance: 1
: . hs == min - |x; — X,

. ® ) . X'L#XJEXh

the point cloud is quasi-uniform if
h < Cqults
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. Moving Least Squares

Least Square formulation:

uM(R) = pewu(R),| pru =argmin Y (u(x;) — p(x;))° W(%,x}")

kernel WH

particle of
interest

neighbour ~
particle
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LBORD Moving Least Squares

Least Square formulation: N,

........:L,i...........+.... QOF..

supp(W(CE, ))

uh(X) = pgu(X),| pru=argminy (u(x;) — p(x;))° W
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neighbour ~
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Moving Least Squares
Least Square formulation: Ny,
u"(X) == pzu(X),| pxu = arg géi]g (u(x;) — p(Xi))2 W ([x —x)
i=

kernel WH

-- u(x) " terea
— u"(2)
eoo U(Qﬁl)
P =1r gt

O...O..O.-.O.......C.+...O ..F..

Lg
supp(W(CE, ))

u"(x) =)y pi(x) ©ji(x) ulx;)

i=1 j=1
where {p;};Z; is a basis for P, © := (BTW*B)~1BTWX,
with W:,i = 5ZkW(|X — Xi|), Bij = Dy (Xz)
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Moving Least Squares
Least Square formulation: Ny,
u'(%) = pru(®),| pru=argmin ) (ulx) —p(xi)” W(I% —xil)
1=

kernel WH

- = u<x) particle of
— u"()
eoo U($l>
P =1r -

O...O....-.Q.........+...O ..F..

Lg
supp(W(CE, ))

uM(x) =) Y pi(x)05i(x) ulxi) = ) ai(x) u(xy)

> pi(x)b;(x)
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Moving Least Squares

Least Square formulation: N,

uh(i) = p)‘(,u(}_()a Px,u = argmin (u(x;) — p(Xi))2 W(|x —x;|)

kernel WH

particle of

- /u/(x) interest

172 ighbour =
P=11 g

> pi(x)b;(x)

diffuse derivative
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Moving Least Squares

Least Square formulation: N,

uh(i) = p)‘(,u(}_()a Px,u = argmin (u(x;) — p(Xi))2 W(|x —x;|)

kernel WH

-- u(x) " terea
— u"()
eoo U(Qﬁl)
Palf ek

Ny, M Ny, M

uMx) =) Y (%) O5i(x) ulxi) =| Y ai(x) ulxi) = ) pi(x) b(x)
i=1 j=1 i=1 j=1
M

T(u") = 7(p;) bj(x) = T is a generic linear functional
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Moving Least Squares
Least Square formulation: Ny,
u"(X) == pzu(X),| pxu = arg géi]g (u(x;) — p(Xi))2 W ([x —x)
i=

kernel WH

-- u(x) " terea
__..h
u' ()
eoo U(Qﬁl)
'.......x,i...........+......F.. P:H2 neﬁah:l'?lier-
Supp(W(ja ))
Constrained Optimization formulation:
()= 3 abute), |{ak) = argmin 35 ot
ut(X) = Az U(X; ay t = ar mm
= R 1 W(lx =)’

- Reproducibility:
_ o h() —
s t.op(R) = S aip(x;), Ype P (p"(x) = p(x))
2
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Generalized Moving Least Squares

Recipes (2 equivalent formulations):

1. Least Square formulation:

. >
m2(u) :== T=(Pxu)s| Pxw =argmin » (A'(u) — A!(p))” W(x,x))

C.......a;iﬁ... ([ ] .....O+ ® 000 00 F [ N J
SU.pp(W(CT?, ))

2. Constrained Optimization formulation: -

h i \h i - ja’|
To(u) := > a’ A'(u),| ja’ } = argmin ) = ;

B icls 1 ot e, W(X,x7)

s. 6. 7x(p) = ¥ a’M(p), Wpe P (4(p) = 7x(p))
iclx
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Generalized Moving Least Squares
(approximation theory)

Goal: collect and consolidate approximation results* for GMLS

In particular we are interested in these generalizations:
Approximation space: we want to consider vector polynomials and subspaces of complete
polynomial spaces (e.g. div-free, curl-free spaces)

Sampling/target functionals: we want to consider differential forms and in particular volume
integrals, fluxes over (virtual) faces and line integral over (virtual) edges

1
)\e = / u - t )\f u) = — u-n; )\U = /
|e@| () fil Jy, |V|

Applications: PDE discretizations and data transfer.

In the following we present
generalization of definition of “local polynomial reproduction”
existence and approximation results for different sampling/target functionals

* Mirzaei, Narcowich, Rieger, Schaback, Ward, Wendland
I ——



e rh) et
ational
LORD Laboratories

LABORATORY DIRECTED RE

Generalized Moving Least Squares

Ingredients:
V,V* - a function space (e.g. continuous functions) and its dual
P = Span{pq;}?zl cV - a finite dimensional approximation space, e.g. polynomials
AP = {)\?, ce ey )\?Vh} CACV” - a finite set of sampling functionals (e.g. point evaluations)
FE analog: degrees of freedom
TeT cCcV” - a target functional (or a family of target functionals)

W(r,\i): (TUA) x (T UA) — R  -awindow function correlating functionals (e.g. a radial
kernel) determines the smoothness of reconstruction

Example, MLS case:

Point cloud X" = {x!}Mr C Q, with filling distance h = sup min |x — x;|.
Xh’EQ ’L:].,,Nh

ueV=C"YQ), P=I"Q), N(uw=ux), mx=ux), W=W(x-x]|
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Properties of Generalized Moving Least Squares s

Main questions: When is the reconstruction possible? How good is the reconstruction?

* Unisolvency:
In order for 7/ to exist, Ay := {\;}ier,, must be P-unisolvent, i.e. for p € P

Vi € Ax, \i(p) =0 <= p=0.

* Approximation property:

|7'>}<L(U) — 7x(u)| ~ O(h?), for some s.

> Sufficient results for unisolvancy and approx. error have been provided by Wendland* for (non
generalized) MLS.

> Non local smapling operators**

> Results has been generalized by Mirzaei***, for point derivatives as target functionals:
D&M (w) — DY (u)| ~ O(R*+1=12D) wwhere k is the degree of the polynomials.
and for weak derivatives in Sobolev spaces®**,

* H. Wendland, Scattered data approximation, Vol. 17. Cambridge university press, 2004
** Christian Rieger, PhD thesis, personal communication.
*** D, Mirzaei et Al., IMA J. Num. Analysis, 2011, D. Mirzaei, Comp. And App. Math. 2016




ey Towards a general theory for GMLS: local reproduction

Result (local polynomial reproduction) [MLS]
If, for each x € Q C R4, A" ¢ A C V*, exist Cioc > 0 and C, > 0, s.t.

ri(p) := >, ak p(x;) = p(x), Vp € II"™ - consistency
S lak] < C, - uniform boundness

x — x| > Cloch = at. =0 - local support

— \rﬁ(u) —u(x)| < C’u,mhmle

Result (generalized local reproduction) [GMLS]
If, for each 7 € T C V*, A" ¢ A C V* there exist C', — 0, ChT — 0,
CZCI}LL,A — O, S.t.

( 7h(p) =3 at \i(p) = T(p), Vp € P - consistency
S lai| < Ch - uniform boundness
< d(r, ) > C!. = al =0, - local support
VfeV, dpeP such that:
I7(u—p)| <C" - and - approximation
| - pl S Chy, WA d(n ) < Ch

= |7"(u) — ()| < Oy 7 + C3Cy
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'@& Reconstructing vector functions
(from projections along given directions)

Associate to each particle ¢ a position x; and a unit vector v; € R<.

Sampling functional: Ai(a) = u(x;) - v;

Filling distance h,, is the radius of the smallest ball that centered at any
point of ) contains d particles whose versors vy, ..., vy contain a basis for R?
with associated determinant bigger than w (| det|vy,...,vg4|| > w).

+—p V3
" .\ Vs FOI' hw S C(@,R,m, UJ), VP S [Hm]d’
VC I\‘ i, € Ap, such that |\; (p)| > pu||Pll0,00
2 V4

Other sampling functionals we considered:

1 1
Af(a) = ‘/ u-t; )\:Lf(u) u-n; A (u) == v /Vu(y)dy

‘6 B |f7,| fi
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Basic technique:
h

T (u) = T2 (w)] < |7(w) = 7 (D) + |7 (p) — T (u)|, (VP € P)
< TX(U) — Tx(p)| + |73}Z“ (p - U)|a < reconstruction property
N, .
< Im(u = p)| + Zl Ai(u—=p)ar | < GMLS definition
1=
< [rx(u —p)| + max |X;(u —p)| X |ai, |-
€14« icl, A

|
> lai | < Cwlimx|

1€lyx

A

P*

Holds for any target functional and approximation space:

() — 7 (W)| < |7 (= )| + Cw |17 P

At max A (u—p)|, peP
1€14«
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Ai(u) = u(x;), 7x(u) = D(u)| V=CFYQ), P=1I"Q)

xX 7

Take p = pf;,u, the Taylor polynomial of degree k of u at x.

D3 (u) = D" (u)] < |DZ(u = pyc )| + Cw || DY

A max [Ai(u — p§ )|
€14«

P*

Taylor approx.

Mirzaei** Taylor approx.
(lof < k)

0 O (h—lal) O (hk+1)

D5 (u) = D™ (u)| ~ O (hF*17101)

** D. Mirzaei et Al., IMA J. Num. Analysis, 2011.
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V ={ue[CF(Q)? div(u) =0}, P ={p e [T*Q)]¢ div(p) =0}

)\;Z(u) =u(x;) - ej, I (u) = u(x) - e;, Tx= (15,..., T}C(l)

The Taylor polynomial pfé’u of u € V, belongs to P (it’s divergence free).

At max X (u = p )|

T2 (u) = " (w)] < [ (a - py)] + Cw I ma

P*

Taylor approx.

Taylor approx.
(la] < k)

0 O (hk—l—l)

[ Tx (1) — T3 ()] ~ O™

Note that, in general, div(7(u)) # 0.
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integral target functionals (e.g. used for nonlocal problems)

Aj(a) = /“ 6 V=CMUQ), P=[r©)]°

EA

Tx(u) = div(u)l, AT ()] < flul[zoe e

Take p = pf;,u, the Taylor polynomial of degree k of u at x.

A max [Ai(u = py )|

7x(w) = ¢ ()] < [me(u = pi )| + Cw 7

ﬂ Mirzaei™*
\/

|
v
T (1) — 72 (u)| < 0 + Ch™ h* 1 u| s, if |e;| ~ h

(1) — 7 ()] < Ch¥Jul]sc 0

P*

Taylor approx.
(k=>1)

** D, Mirzaei et Al., IMA J. Num. Analysis, 2011.




Aij(a)

eij

Tx; (1) = div(u)

h
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= / u -ty ~ K(xi;)(9; — ¢i)

X3

P = [II,,,]*

W (7, Aij) = W(|x — x45])

ey Application to PDE: staggered scheme for Darcy
Xk
div(u) = "o e
u = _Kv¢ Xi ®
X% e
an X;

Solution of PDE w/ jumps in permeability

Vo

Vo

20

210
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a(u,v) = f(v), Yve HY(Q)

Z ar(u,v) = Z fr(v), Yove H! (2) Sum over mesh elements
k k

Vi — Span{vz- cV, v (Xj) — 5ij}£ihl Finite dimensional space

Z ak (v, vi)u Z S (vs) Finite dimensional formulation
g,k
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Galerkin Discretization ) s,
h
Z ax (v, vi)u i = Z fr(vi) Finite dimensional formulation
7,k k
Recall that:
2 _
() == Tx(Pxu)s Pxa = argmin » (N (u) = XE(p)” WX, x7)
ZEI;‘c
Z ag (vj s Pxy, v, )u?’ = Z fk (pxk.,’uz-) Linearity of bilinear form

Z ak(pxkjvj ,ka,vi)?{? = Z fr(px,, v;)  Linearity of bilinear form

i,k
Z a(@bj; Cbz)u;" = f(ﬁbz) where qb" prk v; Xen (X
J
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Basis functions

04

03

Example (1D)
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Conclusion

* GMLS are fun (?)
* Lot of flexibility
* Lottodo
* Prove well posedness of GMLS DG

formulation
* 2D/3D implementation

Thank you!




