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Motivation:

• GMLS allows to reconstruct functions/functionals given samples on scattered data points
• It can be use for data transfer between different meshes / point clouds
• It can be use for meshless discretizations of differential problems

Outline:

• Intro to (Classic) Moving least Square
• Intro to Generalized Moving least Square
• GMLS approximation theory / tools
• Meshless discretization
• A collocation method
• A Galerkin method
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point cloud:
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h x filling distance:

h := sup inf x
xeS2 x,EXh
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Moving Least Squares

point cloud:

xh - Nh
—

filling distance:

sup inf —
x.EQ xiEXh

separation distance:

h, := min — xj
xi x3 Exh, 2
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Moving Least Squares

point cloud:

xh - Nh
—

filling distance:

sup inf — Xi
x.EQ xiEXh

separation distance:

hs := min — I x2 — xjx,4)ci Exh 2

the point cloud is quasi-uniform if

h < cqhu s
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Least Square formulation:

u
h
X) Dk (,u \X) 

Moving Least Squares

Nh

PR,u = arg min
PEP .

2=1

p(xi))2 147()c,

particle of
interest.

neighbour -
particle

kernel Wm
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Least Square formulation:

u

►
X

Moving Least Squares

Nh

PR,u = arg min
PEP .i=1

• 00 • • • • • • • • • • • • • • • • •• • • • • • • III • •

supp(W(,-))

- p(Xj))2 W(1C

particle of
interest.

neighbour -
particle

kernel Wm

*
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Least Square formulation:

2th (X) pk, (X)

u

►
X

1th (X) -

Moving Least Squares

Nh

PR,u = arg min
PEP .

i=1

• 00 • • • • • • • • • • • • • • • • •

Xi

M

• • • • • • •

supp(W(,-))

pj (X) eji (x) u(xi)

• •

- p(Xj))2 W(1C

20)

uh (x)

• • • u(xi)

112

j=1 j=1

where {pj}im=1 is a basis for P, := (BTT/TP cB)-1BT-wx,

with Wixk := 62kWax — Bij := pj(xj)

particle of
interest.

neighbour -
particle

kernel Wm

*
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Least Square formulation:

px,u(X)~

u
►
X

Moving Least Squares

Nh

PR,u = arg min
PEP .

2=1

• 00 • • • • • • • • • • • • • • • • •

Xi

M

i=1 j=

133

• • • • • • • III • •

supp(W(, -))

eji (x) u(xi) =

- p(xj))2 W(IR - xi 1)

20)

uh (x)

• • • u(xi)

112

Nh

ai (x) u(xi)
j=1

particle of
interest.

neighbour -
particle

M

j=1

kernel Wm

*
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Least Square formulation:

px,u(X)~

u
►
X

Moving Least Squares

Nh

PR,u = arg min
PEP .

i=1

• 00 • • • • • • • • • • • • • • • • •

Xi

M

i=1 j=

M

P3

Ox
j=1

• • • • • • • III • •

supp(W(, -))

eji (x) u(xi) =

M 

bj (X) +

x j=1

— p(xj))2 WoR — xi 1)

112

Nh

ai (x) u(xi)
j=1

X

particle of
interest.

neighbour -
particle

M

j=1

diffuse derivative

kernel Wm

*
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Least Square formulation:

2t
h 
(X) px,u(X)~

►

h
T

Moving Least Squares

Nh

PR,u = arg min
PEP .

2=1

• 00 • • • • • • • • • • • • • • • • •

Xi

M

i=1 j=

M

• • • • • • • III • •

supp(W(, -))

pj ji(x) u(xi) =

T (R.)) b 3 (X)

— p(xj))2 WoR — xi 1)

20)

uh (x)

• • • U(Xi)

p 112

Nh

ai (x) u(xi)
j=1

particle of
interest.

neighbour -
particle

pj bj(x)
i=1

T is a generic linear functional

kernel Wm

*
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Least Square formulation:

2t
h 
(X) px,u(X)~

►
X

Moving Least Squares

Nh

pk,u = arg min
PEP .

2=1

• 00 • • • • • • • • • • • • • • • • •

Constrained Optimization formulation:

• • • • • • • III • •

supp(W(, -))

{ = arg min
ai

Nh

— p(xj))2 WoR — xi 1)

20)

uh (x)

• • • u(xi)

s. t. p(c) = al p(&) , Vp E P

kernel Wm

particle of
interest.

*

neighbour -
particle
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Reproducibility:

(ph (x) (x))
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Generalized Moving Least Squares

Recipes (2 equivalent formulations):

1. Least Square formulation:

t
TR ) := TR(PR,u) PR,u = arg min (AI (u)

pEP

• 00 • • • • • • • • • • • • • • • • •

2. Constrained Optimization formulation:

TX (2.0

ZEIX
TR
A1:1(U) { aTix =

: IY =

- (p)) 2 "W(,

: W(k, Xin >

• • • • • • •

supp(W(, -))

• •

arg min
ai W (X,

Tx (u) := u(x)

Txh (u)

i(u):=u(xiii)

P=112
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S. t. TRW i (p), Vp E P (p) = Th-c(p))
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Generalized Moving Least Squares
(approximation theory)

Goal: collect and consolidate approximation results* for GMLS

In particular we are interested in these generalizations:

Approximation space: we want to consider vector polynomials and subspaces of complete
polynomial spaces (e.g. div-free, curl-free spaces)

Sampling/target functionals: we want to consider differential forms and in particular volume
integrals, fluxes over (virtual) faces and line integral over (virtual) edges

(u) :=   u • ti
ei

1
(u) = — u • ni

IP ft

Applications: PDE discretizations and data transfer.

1
Xi(u) :=  fy u(y) dy

In the following we present
generalization of definition of "local polynomial reproduction"
existence and approximation results for different sampling/target functionals

* Mirzaei, Narcowich, Rieger, Schaback, Ward, Wendland
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Ingredients:

V, V*

P = span{p2}2Q_1 c V

Generalized Moving Least Squares
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- a function space (e.g. continuous functions) and its dual

- a finite dimensional approximation space, e.g. polynomials

Ah := {Vii,...,AhNh} C A C V* - a finite set of sampling functionals (e.g. point evaluations)
FE analog: degrees of freedom

TETC V*

W (T, Ai) : (T u A) x (T u A)

Example, MLS case:

Point cloud Xh = txhINh c Q, with filling distance h= sup mini=1 1 x — xi 1 .

I1Z

- a target functional (or a family of target functionals)

- a window function correlating functionals (e.g. a radial
kernel) determines the smoothness of reconstruction

xh,c-i i=1,•..,Nh

u e v = Ck+1(Q), P = llk (Q) , Aih(u) = u(xih), Tx = ti(x), W = Wax — XI,/'1)



Properties of Generalized Moving Least Squares

Main questions: When is the reconstruction possible? How good is the reconstruction?

• Unisolvency:
In order for TX to exist, Ax := fAiliEr. must be P-unisolvent, i.e. for p E P

VAi E Ax, MP) = 0< > p = O.

• Approximation property:

•rxh(u) — Tx(u) 0(h,$), for some s.

➢ Sufficient results for unisolvancy and approx. error have been provided by Wendland* for (non
generalized) ML S.

➢ Non local smapling operators**

➢ Results has been generalized by Mirzaei***, for point derivatives as target functionals:

A,''h(u) — g),'(u)1 rN) 0(0±1-1'1)), where k is the degree of the polynomials.

and for weak derivatives in Sobolev spaces***.

* H. Wendland, Scattered data approximation, Vol. 17. Cambridge university press, 2004
** Christian Rieger, PhD thesis, personal communication.
*** D. Mirzaei et Al., IMA J. Num. Analysis, 2011, D. Mirzaei, Comp. And App. Math. 2016
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Towards a general theory for GMLS: local reproduction
Sandia
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Result (local polynomial reproduction) [MLS]

If, for each x e Ah c A c V*, exist Cloc > 0 and Ca > 0, s.t.

{ rxh(p) := Ei aix P(xj) = p(x), vp c Ilm
T,,, 141 ca
Ix — xi l > cli„h  > cc;:, = 0

 > i.x~,,~- u(x)1 < Cuo-nhm+1

- consistency
- uniform boundness
- local support

Result (generalized local reproduction) [GMLS]

If, for each TETc V*, Ah c A c V* there exist qh,c,c o, 0,

CahqA O, s.t.

Th(P) := Ei aTAi(P) = T(P), VP E P
Cah

d(T, Ai) > Clhoc > = 0,

Vf E V, P such that:
17-(u — p) < Cf,11 T and
lAi(u < VAi : d(T, Ai) < Cihoc.

  Th (11) — T < Cf7LT 
Cacf7LA

- consistency

- uniform boundness

- local support

- approximation



Reconstructing vector functions
(from projections along given directions)

Associate to each particle i a position xi and a unit vector vi E

Sampling functional: (u) := u(xi) • vi

d

Filling distance h, is the radius of the smallest ball that centered at any
point of Q contains d particles whose versors v1, . . . , vd contain a basis for qd
with associated determinant bigger than w det[vi, . . . , vd] > w).

-q111----0 V3
V

V 5

2- rAT

For h, < C (0 , R, m, w) , bp G [111d,

E Ah, such that Ai, (p) I > pw11131

Other sampling functionals we considered:

1
(u) • —   u • ti Aif (u) =   u • ni A'Au) :=   u(y) dy

lei fei 
fy
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GMLS approximation results:
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Basic technique:

Tx (21) — 7-,1' (U)1 • ITx(U) — Tx(P)1 + 17-43) — 7-31 (U)k (V p e P)

• 1 Tx (u) — Tx (p) 1 + 17-31c) (p — u)1, reconstruction property

Np
• ITx(u — p) + E Ai(u — p) a%

i= 1

< 1 Tx (7-1 — p) + max 1 Ai (u — p) Ex ici-x

GML S definition

>2, ci/,rx < 1 CwIMP*A;1—
ierx

Holds for any target functional and approximation space:

1Tx(U) — T3c' MI 1Tx(11 — 13)1 + C W 1Tx 1 P* 11 A;1 1 max
icIx

Ai(u - P)I, p E P



GMLS approximation results: derivatives as target functionals

Ai(u) := u(xj), Tx(u) = Da (u)lx , V = Ck+1(Q), P = Ilk (S2)

Take p = pxk u, the Taylor polynomial of degree k of u at x.

- _D'h(u)1 <

0

- pxk ,u)1 cw

Taylor approx.

k)

- g,'11(u)1 r• (hk+1-11

** D. Mirzaei et Al., IMA J. Num. Analysis, 2011.

P* 11 A;1 max Ai (u — pkx,u
ieIx

Mirzaei**
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Taylor approx.

(h-lal) (hk+l)



GMLS approximation results: div free spaces
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V = {u E [Ck+1 (Q)]d, div(u) = 01, P = {13 e (Q)r div (13) = 01

Aii (u) := u(xi) • ei , = u(x) • ei
Tx (Txl, Txd)

The Taylor polynomial pxkot of u E V, belongs to P (it's divergence free).

T3jc (U) 73iC h (U) < 1TX (11 133Ck 171)1 C

Taylor approx.

(ed k)
►
0

I Tx* - 1-x(u) rJ o(hk+l)

Note that, in general, div(Txh(u)) / O.

A;1 max IV (u — Pk )1x,u
zEIX

Taylor approx.

c9 (hk+l)



GMLS approximation results:
integral target functionals (e.g. used for nonlocal problems)

1
A,7(u) := lei fei u •• ti,

Tx ( u ) = di IT ( u ) 1 3,

V = Ck+l(C2), P = [nk (Q)] d

N(u)1 s 111114,00 (ei)

Take p = p xk ,,,, , the Taylor polynomial of degree k of u at x.

1Tx(U) Tx (U)1 < 1Tx(u — /3;c,u) 1 + Cw

Taylor approx.
(k > 1)7

Tx1

7

P* 11A;1 11 max lAi (u - pxk lu) IiEi-x

Mirzaei**

1Tx(u) T3'Ic'(u)I < 0 + Ch-1 hk+1 1

.or
ul

1Tx (11) — T311( (11)1 C hk 1114 co ,S2

** D. Mirzaei et Al., IMA J. Num. Analysis, 2011.

oo,Q , if leil ^) h
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Application to PDE: staggered scheme for Darcy
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I div(u) — 0
u KVO

•

•

Xk
•

eik

xi •
❑

•

Solution of PDE w/ jumps in permeability

VOI

Aii (u) U • tii

•
Xi

15

K (xii)(0i 0i)

Tx z (U) = div (11)1 x

P
[ll m]d

W (Tx Aij

— Exact
- - dx = 1/16
- - - dx = 1/32

- - dx = 1/64
dx = 1/128

.2 0.4 x x 0.6 0.8
I I



Galerkin Discretization
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a(u, v) = f (y) , by E H1 (Q)

Eak (u, v)
k

fk(v), by E H1 (Q)

Vh = span{vi E V, vi(xj) = Oii}iiv_h1

ak(vi,vi)ujh — fk(vi)

Sum over mesh elements

Finite dimensional space

Finite dimensional formulation



Galerkin Discretization
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2
j,k

ak (v ,vi)7111 =12 fk(vi)

Recall that:

Tkh (u) := Tk(P)-c,u), Px,u

j,k

ak (v Ack ,vi)u ih —

Finite dimensional formulation

= arg min (Aiii(u) — Aiii(p))
2 
W(R, )(in

pEP
iE/R

fk (Pxk Ivi Linearity of bilinear form

v„hakwxk lvj )(-kj
j,k

a(Oi
3 = f (01)

fk (Pxk,vi) Linearity of bilinear form

where Oi(x) := viXck (X)



Galerkin Discretization (DG)
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Basis functions

0.1

0

Example (1D)

1D

1

— Pe
— Pe .10
— Pe =35
— Pe = 70
— Pe = 700

02

03

0.4
x

OA 0.8

3

0.01

0.0001

1e-06

le-08

lc- )11.001

• P3

— m-2.01
— m = 4.02
— m = 5.92

+ b • Vu = .f

I
0.01

I I I I I 1.11

0.1
epsilon

2D
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Conclusion

• GMLS are fun (?)

• Lot of flexibility

• Lot to do

• Prove well posedness of GMLS DG
formulation

• 2D/3D implementation

Thank you!


