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3 Method to Estimate the Risk of FCEV Incidents in Tunnels

Event Sequence Diagram - represents an undesired event as a sequence of sub-events
O Event tree begins with an initiating event and illustrates the chronological sequence of
events involving the successes and/or failures of the system components

o Each bifurcation is assigned a probability of occurrence

O Total for each outcome is the combination of all the probabilities leading to that outcome

Branch line results are calculated via Monte Carlo sampling of all conditional
probabilities

Journal paper with all the analysis and results Accepted with Revision and currently
revisions are Under Review for publication in Fire Technology

FIRE
TECHNOLOGY



4 I Uncertainty

Not enough data to estimate probabilities with high confidence

Uncertainty distributions were derived based on the current state-of-knowledge

Each branch line result is a range of possible probabilities for each scenario

Each branch point uncertainty was propagated through the event tree to perform a Monte Carlo
analysis

Probability of each scenario is presented as a distributions of these multiple calculations



5 I Event Tree
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6 I Event Tree

Initiating Event — Hydrogen Vehicle Crash in a Tunnel

• Generic crash rate for tunnels used as a conservative estimate

• Tunnel crash frequency estimates averaged over a three-year period for 10 different countries published

• Expressed as crashes per million vehicle kilometers:
0.277, 0.337, 0.355, 0.420, 0.315, 0.8, 0.303, 0.253, 0.145, 0.483, and 0.345
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Reference: Bassan S (2016) Overview of traffic safety aspects and design in road tunnels. IATSS Research 40 (1):35-46.



7 Event Tree

Severity of a Crash - Severe injury is a proxy for crash severity (people are very vulnerable)
• Breaks probability of a severe crash into two components: the probability, given a crash, that an injury occurs
and the probability, given an injury, that the injury is severe

• Total of 2420 crashes and 800 injuries for Probability of Injury occurring

• Total of 2230 injuries with 278 of them severe from 4 different studies
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8 Event Tree

Hydrocarbon Fire - likelihood of a crash causing a fire given that the crash was severe

• Assumes than a crash involves at least one traditionally-fueled vehicle and that any crash resulting in a fire is
considered severe

• Used average severe crash rates and average fire crash rates from Italy, Norway, and Switzerland over a four
year period
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Year: 2006 2007 2008 2009

Average Severe Crash Rates 0.2045 0.1608 0.0913 0.1284
Average Fire Crash Rates 0.0510 0.0619 0.0507 0.0433
P(FirelSevere Crash) 0.249 0.385 0.555 0.337

Reference: Bassan S (2016) Overview of traffic safety aspects and design in road tunnels. IATSS Research 40 (1):35-46.
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9 Event Tree

Damage-Induced Hydrogen Release — Probability that hydrogen is released due to crash
• Used published crash test data

• Five tests were available, no releases

• Used Jeffrey's prior (0.5 event)
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10 I Event Tree

Pressure Release Device Demand— Probability that hydrocarbon fire exposes thermally-activated
pressure relief device (TPRD) on the H2 tank

• Actual crash specifics determine the extent of the fire and the proximity of the vehicle and pressure vessel to
the fire; neither of these parameters are known

• Uniform distribution between zero and one was assumed due to high uncertainty
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11 Event Tree

Pressure Relief Device Activation— Possibility that TPRD fails to operate on demand
• literature review was performed on pressurized hydrogen tank fire testing that included TPRDs

• Five sources of data were found

• Used Jeffrey's prior (0.5 event) because no failures were recorded
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References: Koji Yamazaki YT (2017) Study of a post-fire verification method for the activation status of hydrogen cylinder pressure relief devices. IJHE, 42 (11):7716-7720
Suzuki J, Tamura Y, Watanabe S, Takabayashi M, Sato K (2006) Fire Safety Evaluation of a Vehicle Equipped with Hydrogen Fuel Cylinders: Comparison with Gasoline and CNG Vehicles.

2006 SAE World Congress, Detroit, Michigan, 4/3/2006 - 4/6/2006
Jinyang Zheng HB, Ping Xu, Honggang Chen, Pengfei Liu, Xiang Li, Yanlei Liu, (2010) Experimental and numerical studies on the bonfire test of high-pressure hydrogen storage vessels, .

IJHE, 35 (15):8191-8198.
Weyandt N (2009) Compressed Hydrogen Cylinder Research and Testing in Accordance with FMVSS 304. Southwest Research Institute,
Seike M, Ejiri Y, Nobuyoshi Kawabata, Hasegawa M, Tanaka H (2014) Fire Experiments of Carrier loaded FCV in Full-Scale Model Tunnel - Estimation of Heat release rate and Smoke

Generation Rate. Paper presented at the Third International Conference on Fire in Vehicles, Berlin, Germany, 10/1/2014 - 10/2/2014



12 Event Tree

Hydrogen Ignition — Probability that released hydrogen will ignite

• Probabilities derived for the Canadian Hydrogen Safety Program by adapting non-hydrogen ignition values
suggested in Cox, Lees, & Ang.

• Historically used for hydrogen quantitative risk assessment and to develop separation distances in NFPA

• Actual hydrogen release rate are incident specific - distributions for immediate and delayed ignition were
defined as uniform between the bounding values in the table
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References: Tchouvelev A, Hay D, Bénard P (2006) Quantitative risk comparison of hydrogen and CNG refuelling options. Final Technical Report to Natural Resources Canada
Cox, A. W, Lees, Frank P, Ang, M. L, Institution of Chemical Engineers and Inter-Institutional Group on the Classification of Hazardous Locations Classification of hazardous

locations. Institution of Chemical Engineers, London, 1990.



13 Event Tree Results
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• Green: Hydrogen does not contribute to consequence of crash

• Yellow: Hydrogen does contribute to consequence

o Red: Hydrogen contributes to catastrophic consequence

Exceedance probability curves for each branch line show that the scenarios with the
highest consequences from hydrogen have probabilities on the order of 1E-05 to
1E-04

Overwhelmingly, the most likely scenarios are those in which hydrogen does not
significantly contribute to the consequences.
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Frequency* Severity

A [6.5E-01, 6.9E-01] 6.7E-01 2.3E-01 No Effect
B [2.7E-01, 3.1E-01] 2.9E-01 1.0E-01 No Effect
C [1.3E-02, 3.3E-02] 2.4E-02 7.9E-03 No Effect
D [1.9E-06, 8.3E-03] 8.7E-04 2.8E-04 No Effect
E [8.8E-08, 6.5E-04] 4.4E-05 1.4E-05 Overpressure
F [1.9E-07, 1.4E-03] 9.5E-05 3.1E-05 Jet Flame
G [3.3E-04, 1.8E-02] 6.5E-03 2.1E-03 No Effect
H [3.1E-04, 1.8E-02] 6.3E-03 2.0E-03 Jet Flame
I [1.1E-07, 1.3E-03] 6.7E-05 2.3E-05 Overpressure
J [1.1E-06, 5.2E-03] 5 .2E-04 1.7E-04 No Effect
K [5.1E-08, 4.1E-04] 2.6E-05 8.6E-06 Overpressure
L [1.1E-07, 8.8E-04] 5.7E-05 1.9E-05 Jet Flame

* per million vehicle kilometers



14 I Discussion

What scenario(s) should be the basis of regulatory requirements?


