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+ | Project Objective and Purpose

During near blackout conditions, grid operators may
have an opportunity to restore the system to a safe
condition if a real-time decision support tool is
available.

This project investigates the development of a real-
time decision support tool for that purpose.
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¢ | Existing Planning and Operations

1. In the infrequent
occurrence when grid
operations depart from
planned criterta, how do
we move to a ‘good’
operating point?

2. Where are we? Where do

we want to go? What
path do we taker
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Figure 9 - "Scatter” plot of planning scenarios.




Metaphor For Stability Margin

7

Require “Stability”
Margins of Interest
Voltage Stability Margin
Transient Stability Margin

Non-Linear/Eigen-analysis
Stability Margin

System Voltage Margins

Power Line Transfer Margins

System Droop Margin
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s | General Method

The solution method uses Deep Neural Networks combined with
Monte Carlo Decision Trees to represent the sequence of control
actions and dispatches needed for the grid to increase its stability
margins.

Our approach offers the potential of a speedy
solution to this problem, with a low risk of non-
convergence. The solution will not be proven
optimal, although it will be demonstrated to be
feasible and ‘good’ during off-line testing.

Based on recent work conducted at Sandia



o | Recent Work We Are Building Upon

+Slides 10-19 describe Previous
LDRD work
> Uses Simplified Grid Model

> Demonstrates the Feasibility of
the Approach

o Clarifies Areas for Needed

Research
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? | Defining the State Space
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Stability Margins

. TransientStabthyBoLjnd'ary' T

Transient Stability Level Curves

Transient Stability and Voltage Stability
Level Curves




» | Approach: Machine Learning
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AlphaGrid Deep Neural Network Block Diagram
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15 I Game Play Block Diagram
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Monte Carlo Tree Search (MCTS) Block Diagram (Game Play Turn)
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Structure (of Grid State Data) infers validity of Machine
7 ¥ Learning Approach

15-dimensional grid state data of 1,001 precomputed points flattened onto a 2D hex grid for visualization.
Light yellow represents high stability scores, dark blue represents low stability. The plot shows spatial
correlation and bounded stability regions, validating a machine learning approach!




s | AlphaGrid — playing the game (attacker)

On 1ts own an attacker would play a trajectory from good (yellow) to bad (blue)




s | AlphaGrid — playing the game (defender)

On its own a defender would not necessarily play a trajectory from bad (blue) to the nearest good

(light yellow) but rather would choose good within a group of other good (yellow within a sea of
yellow)
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21 I AlphaGrid Learning Results

Grid model operator comparison

° Trained vs Random — average 89.6% of the time Trained
out-performs Random (in last half of training iterations)

° Trained vs Greedy — average 26.6% of the time Trained
out-performs Greedy (in last half of training iterations)

Random here refers to choice of next state from current, where a random choice (without
repeat) reachable from the current state is chosen

Greedy here refers to choice of next state from current, where the most stable next state
reachable from the current state is always chosen

Percentage of Games Won (head-to-head)

Percentage of Games Won (head-to-head)
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Trained DNN versus Random Player
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» | Conclusions

*Demonstrated feasibility of approach

*Verified learnjng shows improvement in comparison to
* Random state walk

* Greedy state transition

*Just getting started
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5 | Key Research Challenges

*Scalability of State Space Dimensions- Map reduction without losing fidelity

*DNN partitioning — Provides metadata, allowing insights into each solution (geography, type of
constraint, etc)

*Modify solution from discrete space to continuous space

*Use of Transfer Learning- Allows a DNN to be trained for a specific system without starting from a
blank DNN

*Management of cyclical state transitions

*Evaluation of tool across multiple scenarios- checking solution accuracy against many constraints
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Project Goals for 2019

Each year a demo will be conducted, and a paper will be submitted for publication

Year 1 (2019)

* Construction and validation of a state space map at approximate control dimensionality of R20

* Demonstrate operation of the ML decision process using the reduced WECC system and perform solution
verification using dynamic power system analysis.

* Start the development of state space compression methods.
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s | Our Team — Sandia

° Ross Guttromson (co-PI)

> Stephen J. Verzi (co-PI)

° Christian “Birk” Jones (grid modeling)

° Asael “Ace” Sorensen (deep reinforcement machine learning)
° Raymond “Ray”” Byrne (PM)

° Charles “Charlie” Hanley (Senior Manager)



29 I Thank You

Questions?




30 I Backup Slides




31

Performance

Grid Performance

New Game

Choose State IC
Ny J

A 4

Choose

L Actionﬂl State )

Mapping Function

New State
and
Mapped
Reward

Mapped
Reward

Indices
(= )
7
vl
\ ; J
New Grid l
States 4
| N
| N Policy DNN Reward from

Grid Model

+

No

Yes




2 | Proposal Details (Deliverables to be Reduced by 2/3)

Each year a demo will be conducted, and a paper will be submitted for publication

Year 1
¢ Construction and validation of a state space map at approximate control dimensionality of R

* Demonstrate operation of the ML decision process using the reduced WECC system and perform solution
verification using dynamic power system analysis.

¢ Start the development of state space compression methods.

Year 2

* Develop and apply state space compression methods.

* Exercise the tool for multiple scenarios, each requiring a sequence of stable state space transition solutions,
demonstrating feasibility at approximate control dimensionality of R*

* Start investigation to increase scalability using transfer learning methods.

¢ Start the development of methods to implement this process in continuous space.

Year 3
* Improve scalability to approximate control dimensionality of R
* Implement the development of continuous-space solutions
* Utilize transfer learning to train the SoCo DNN.
* Implement the DNN as partitioned blocks to yield meta-information about the solution.

Identify the steps necessary for the deployment of a real-time operational tool.



