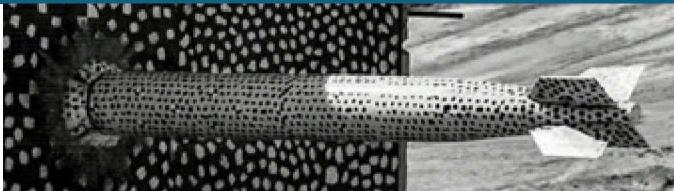


Grid Stability Using Machine Learning State Space Navigation



Co-PIs - Ross Guttromson
Stephen J. Verzi

Sandia National Laboratories

SAND2019-7862PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

- Project Purpose
- Significance & Impact
- Technical Approach
- Technical Accomplishments
- Conclusions/Summary
- Future Effort
- Acknowledgments and Contacts

Outline

- Project Purpose
- Significance & Impact
- Technical Approach
- Technical Accomplishments
- Conclusions/Summary
- Future Effort
- Acknowledgments and Contacts

Project Objective and Purpose

During near blackout conditions, grid operators may have an opportunity to restore the system to a safe condition if a real-time decision support tool is available.

This project investigates the development of a real-time decision support tool for that purpose.

Outline

- Project Purpose
- Significance & Impact
- Technical Approach
- Technical Accomplishments
- Conclusions/Summary
- Future Effort
- Acknowledgments and Contacts

Existing Planning and Operations

1. In the infrequent occurrence when grid operations depart from planned criteria, how do we move to a 'good' operating point?
2. Where are we? Where do we want to go? What path do we take?

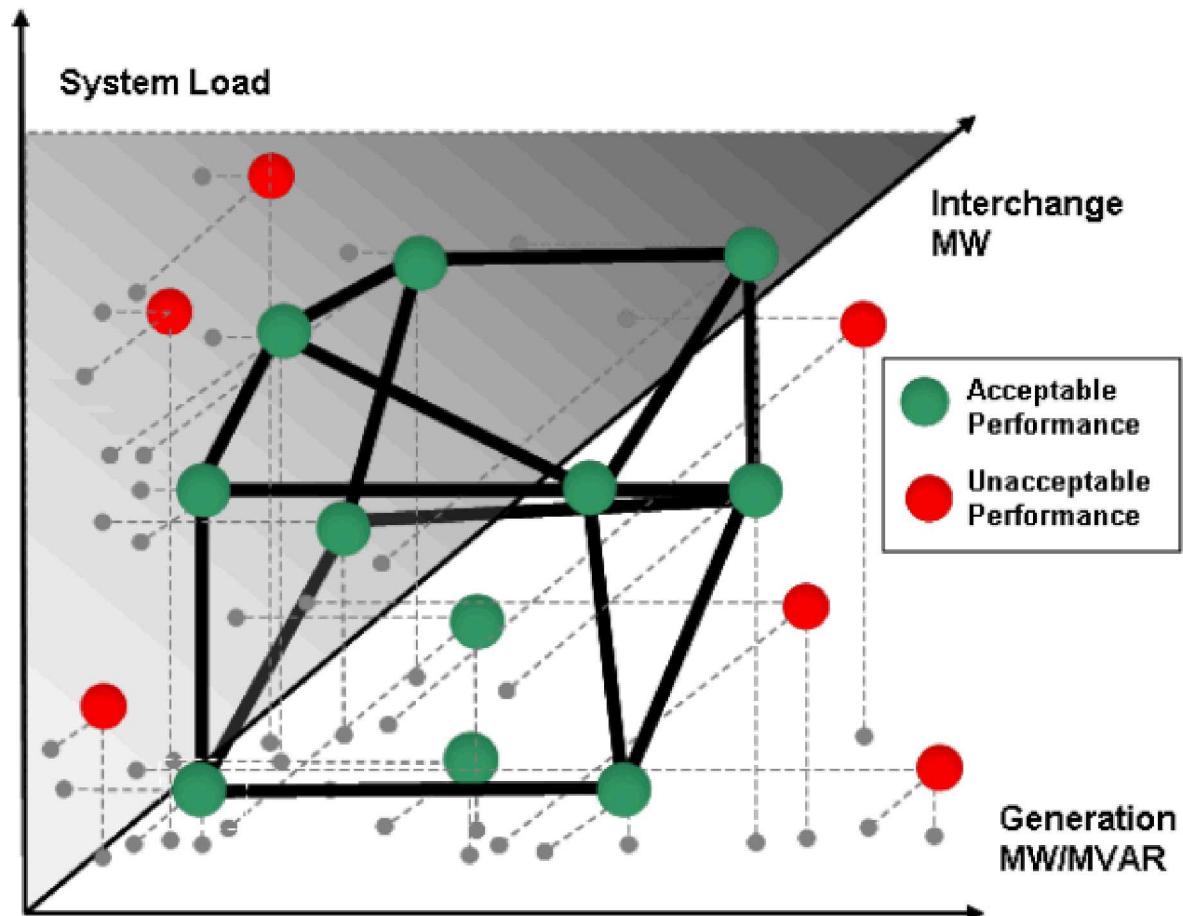


Figure 9 - "Scatter" plot of planning scenarios.

Metaphor For Stability Margin

Require “Stability”
Margins of Interest

Voltage Stability Margin
Transient Stability Margin
Non-Linear/Eigen-analysis
Stability Margin
System Voltage Margins
Power Line Transfer Margins
System Droop Margin

Outline

- Project Purpose
- Significance & Impact
- Technical Approach
- Technical Accomplishments
- Conclusions/Summary
- Future Effort
- Acknowledgments and Contacts

General Method

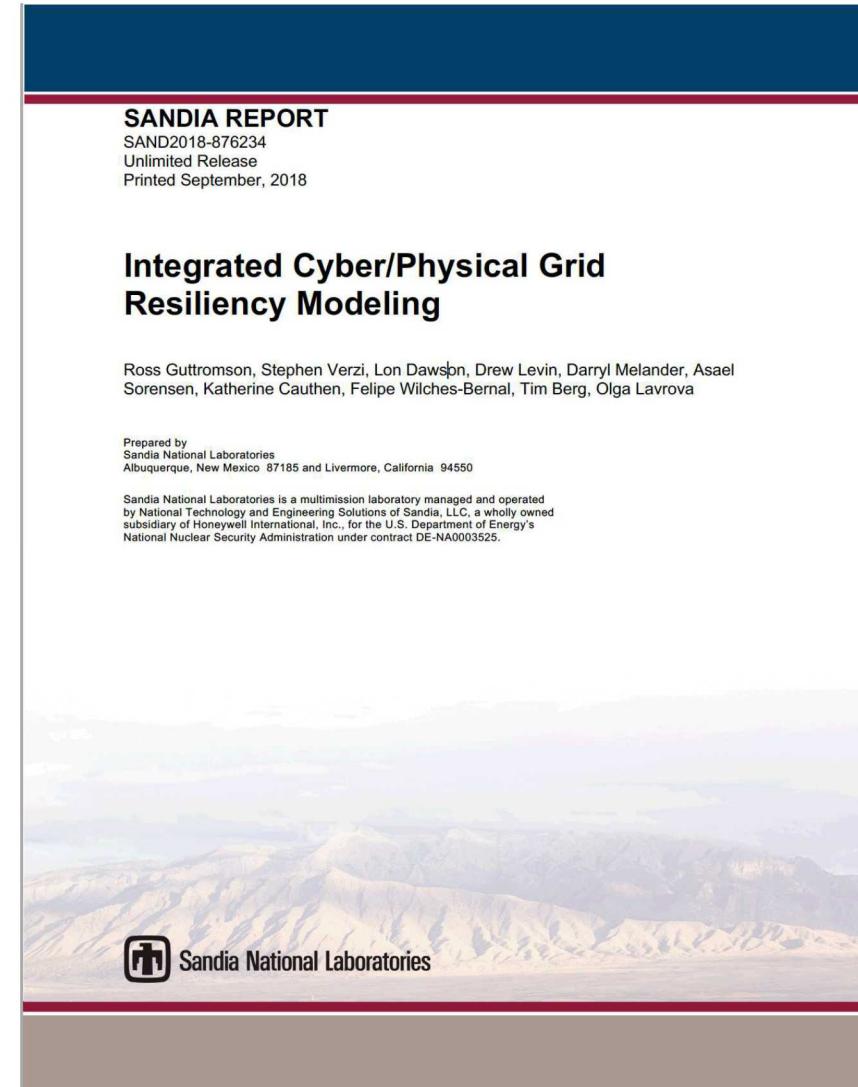
The solution method uses Deep Neural Networks combined with Monte Carlo Decision Trees to represent the sequence of control actions and dispatches needed for the grid to increase its stability margins.

Our approach offers the potential of a speedy solution to this problem, with a low risk of non-convergence. The solution will not be proven optimal, although it will be demonstrated to be feasible and ‘good’ during off-line testing.

Based on recent work conducted at Sandia

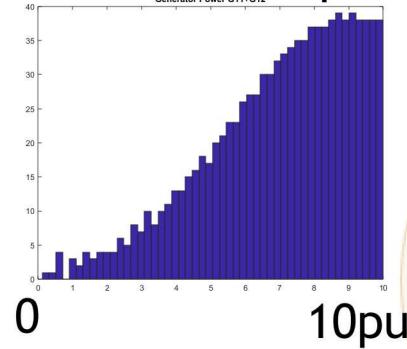
Recent Work We Are Building Upon

- ❖ Slides 10-19 describe Previous LDRD work
 - Uses Simplified Grid Model
 - Demonstrates the Feasibility of the Approach
 - Clarifies Areas for Needed Research

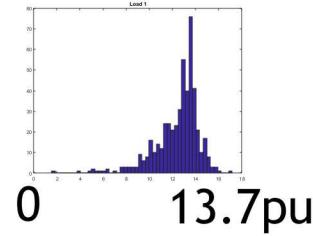


Defining the State Space

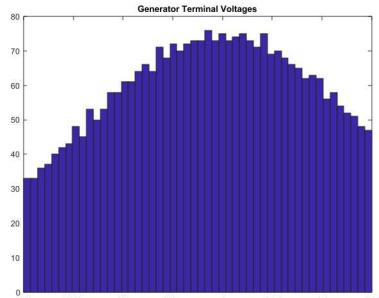
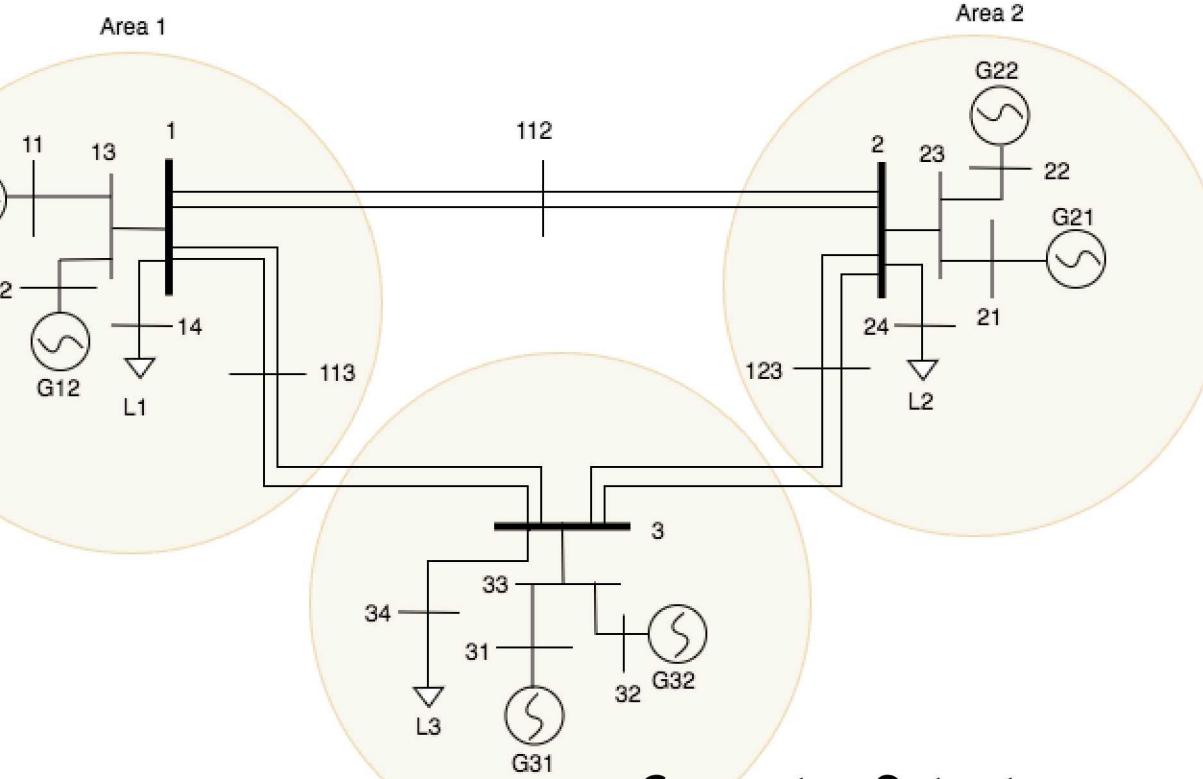
Generator Outputs



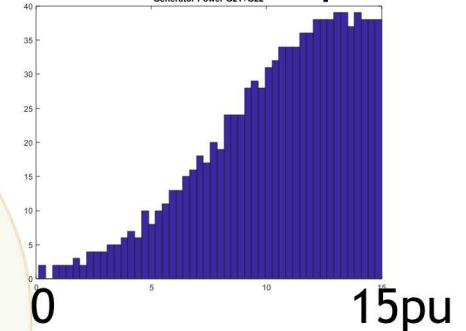
L1 Load



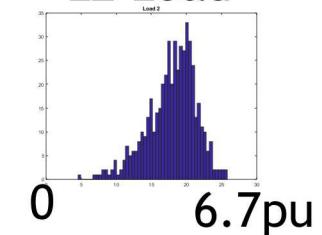
Generator Terminal Voltages



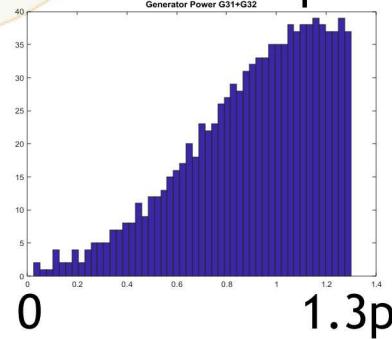
Generator Outputs



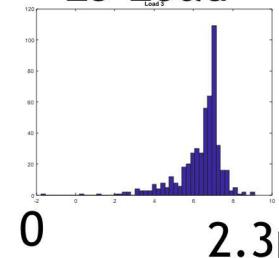
L2 Load



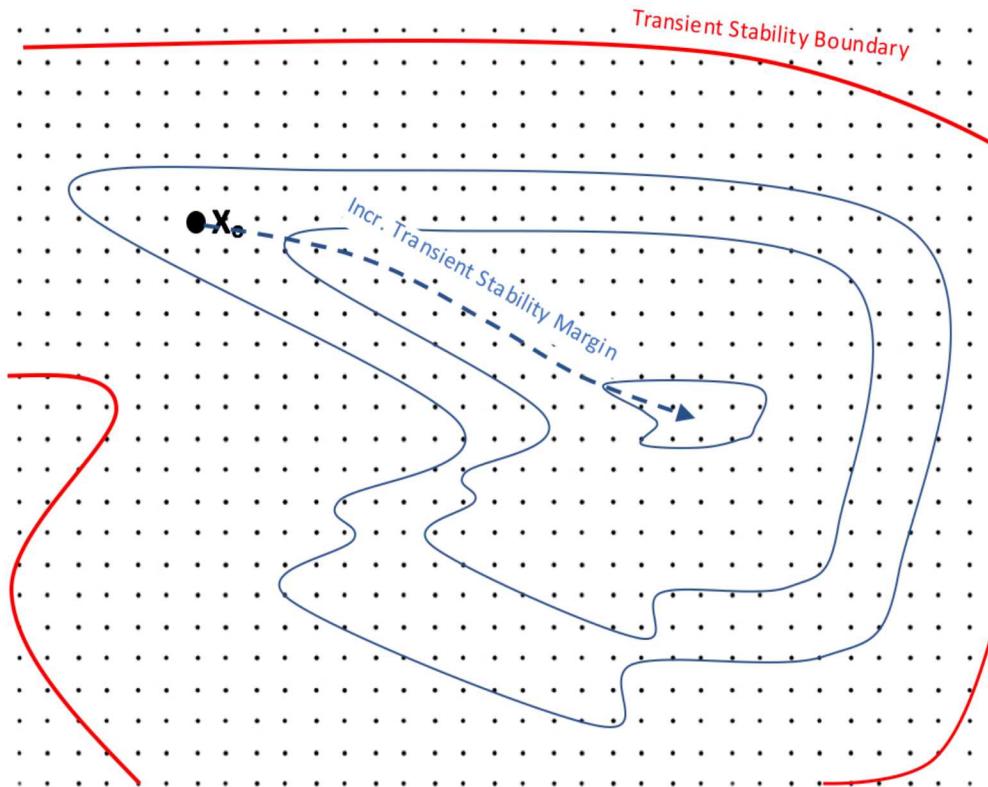
Generator Outputs



L3 Load



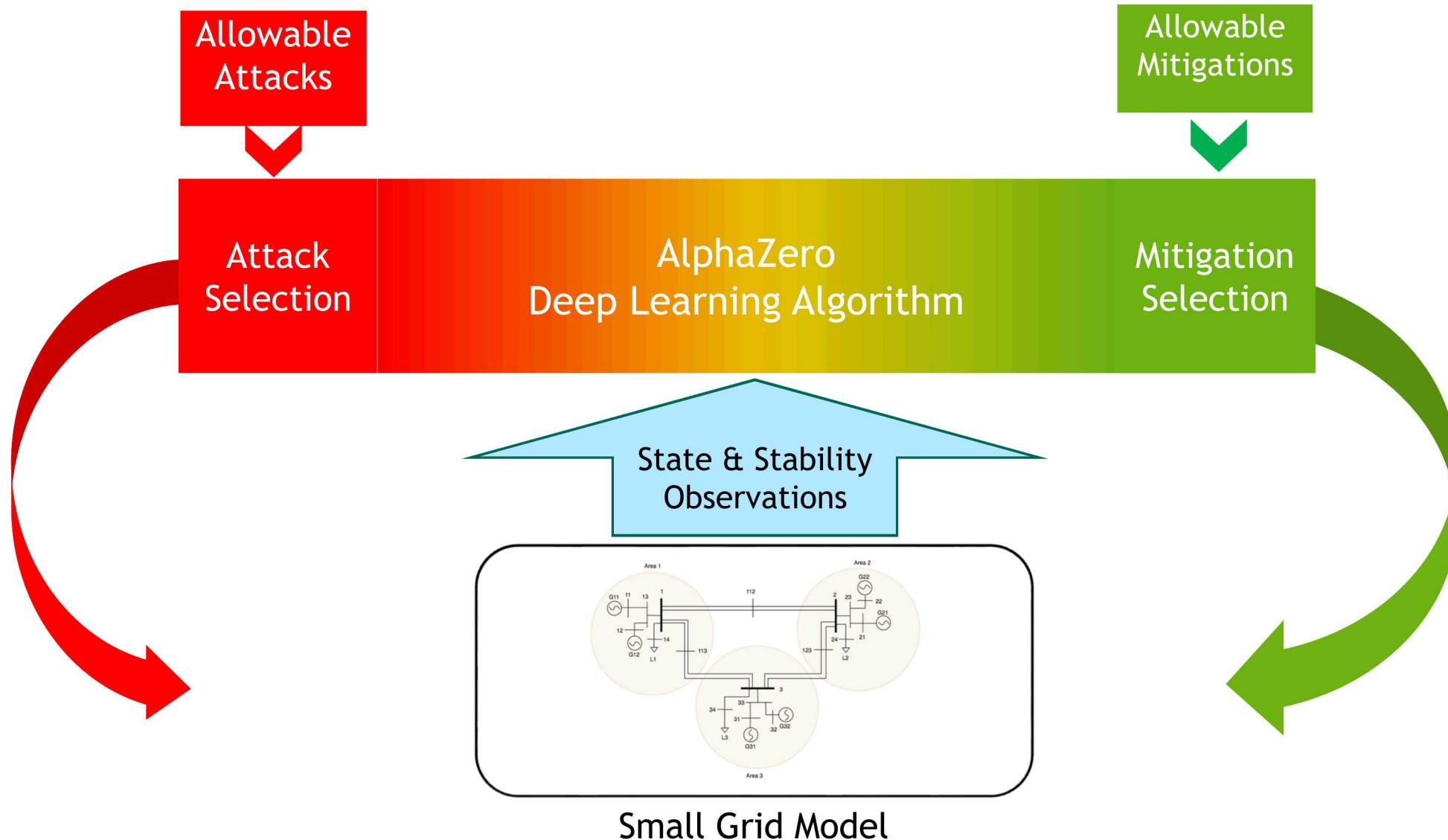
Stability Margins



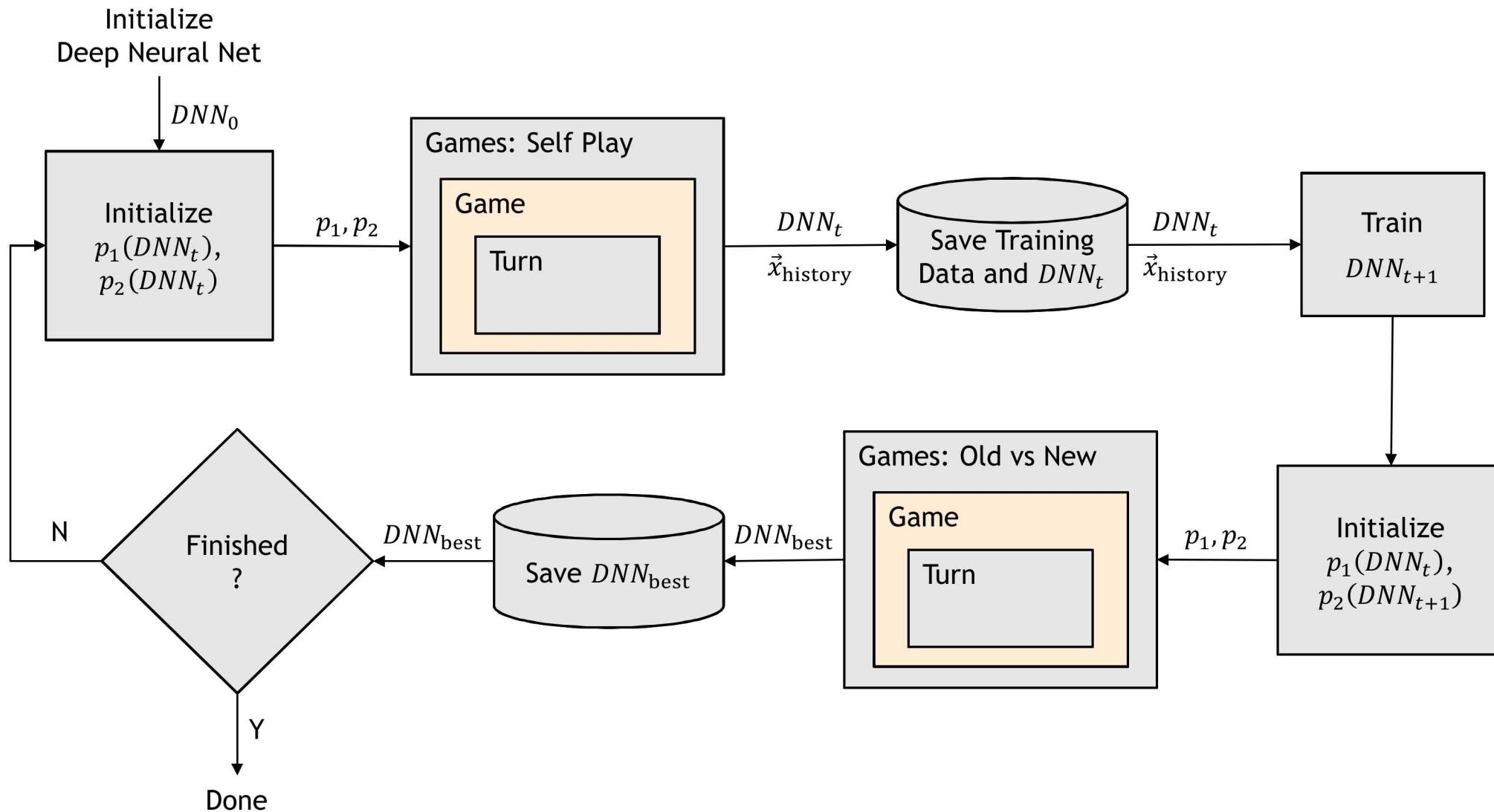
Transient Stability Level Curves

Transient Stability and Voltage Stability Level Curves

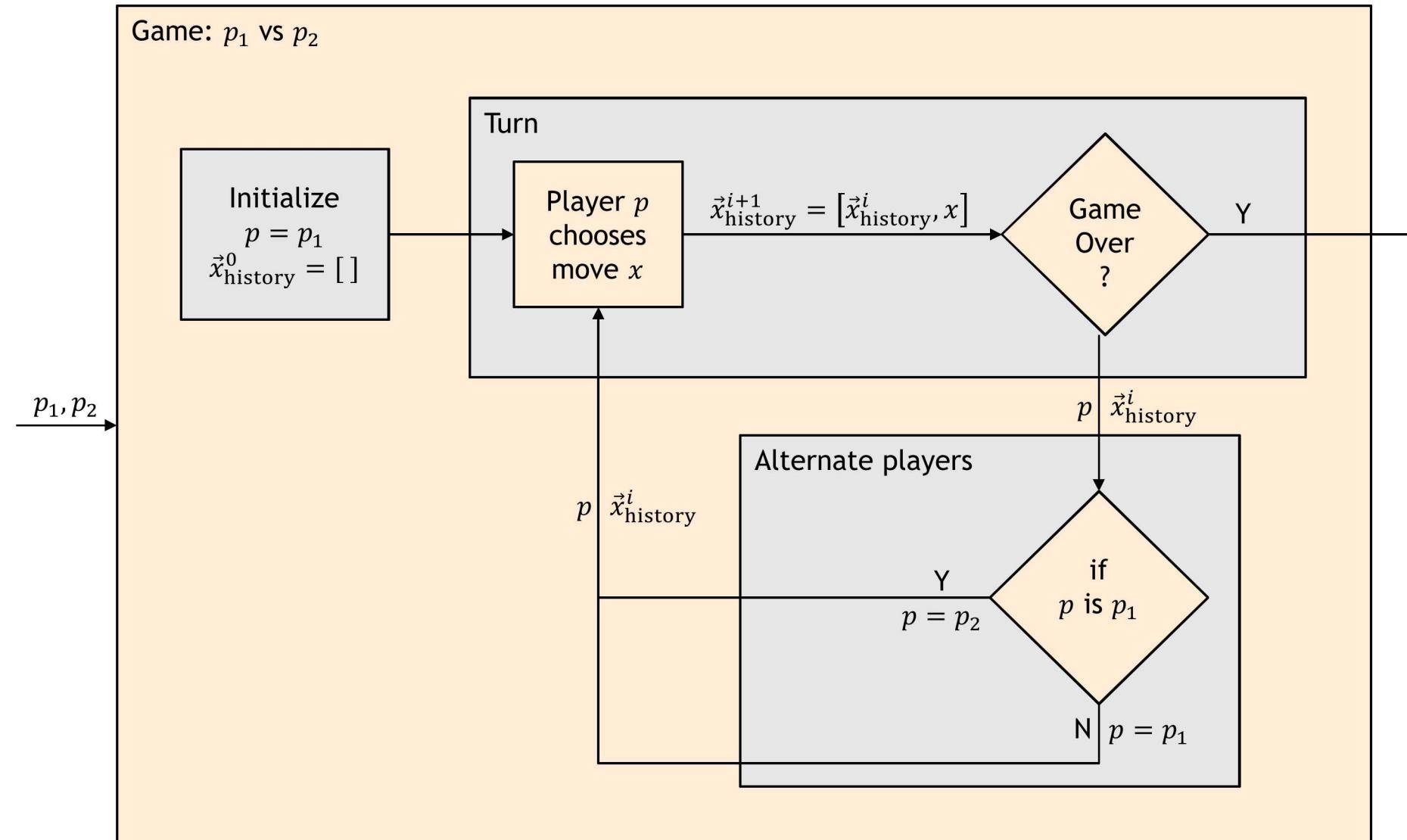
Approach: Machine Learning



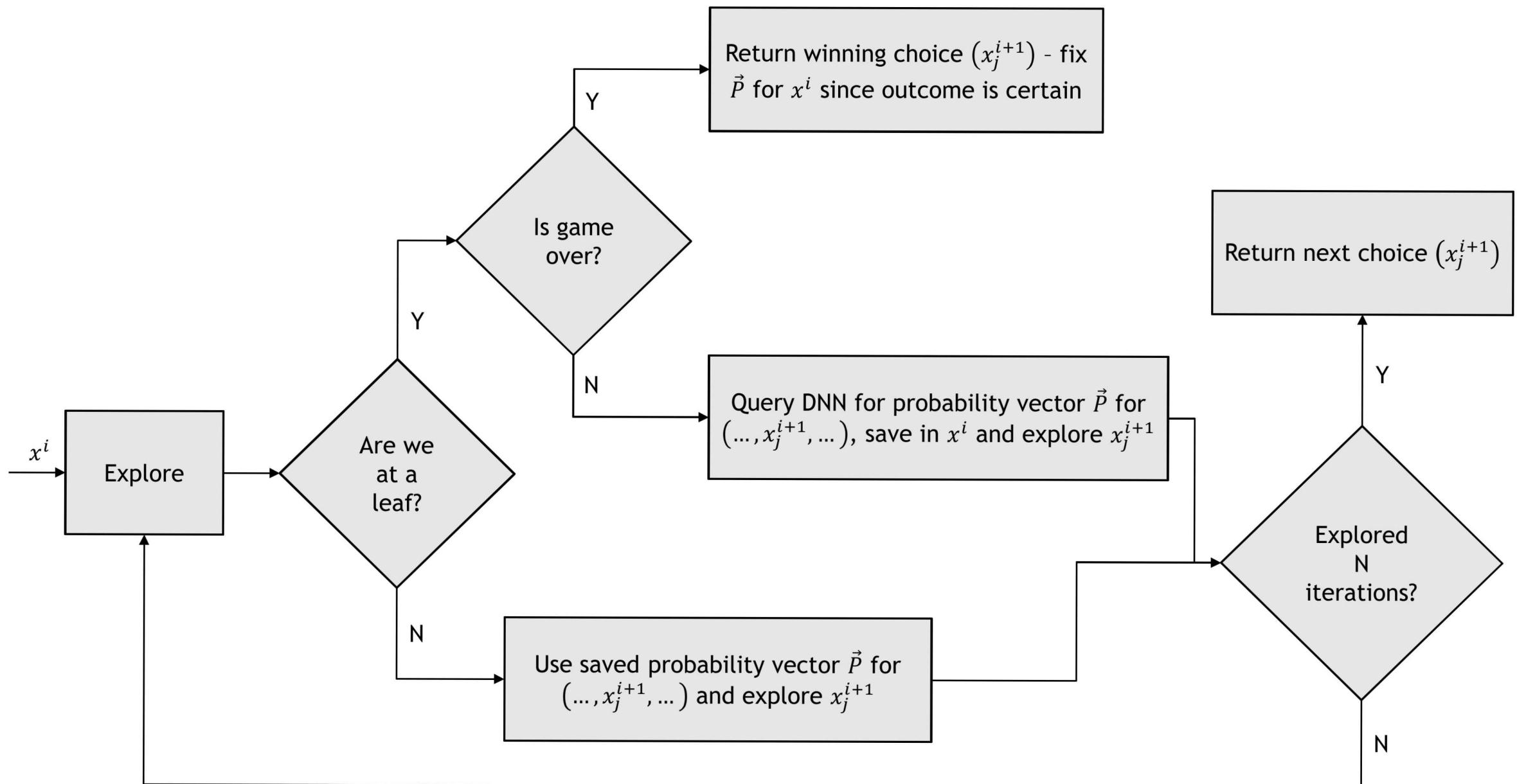
AlphaGrid Deep Neural Network Block Diagram



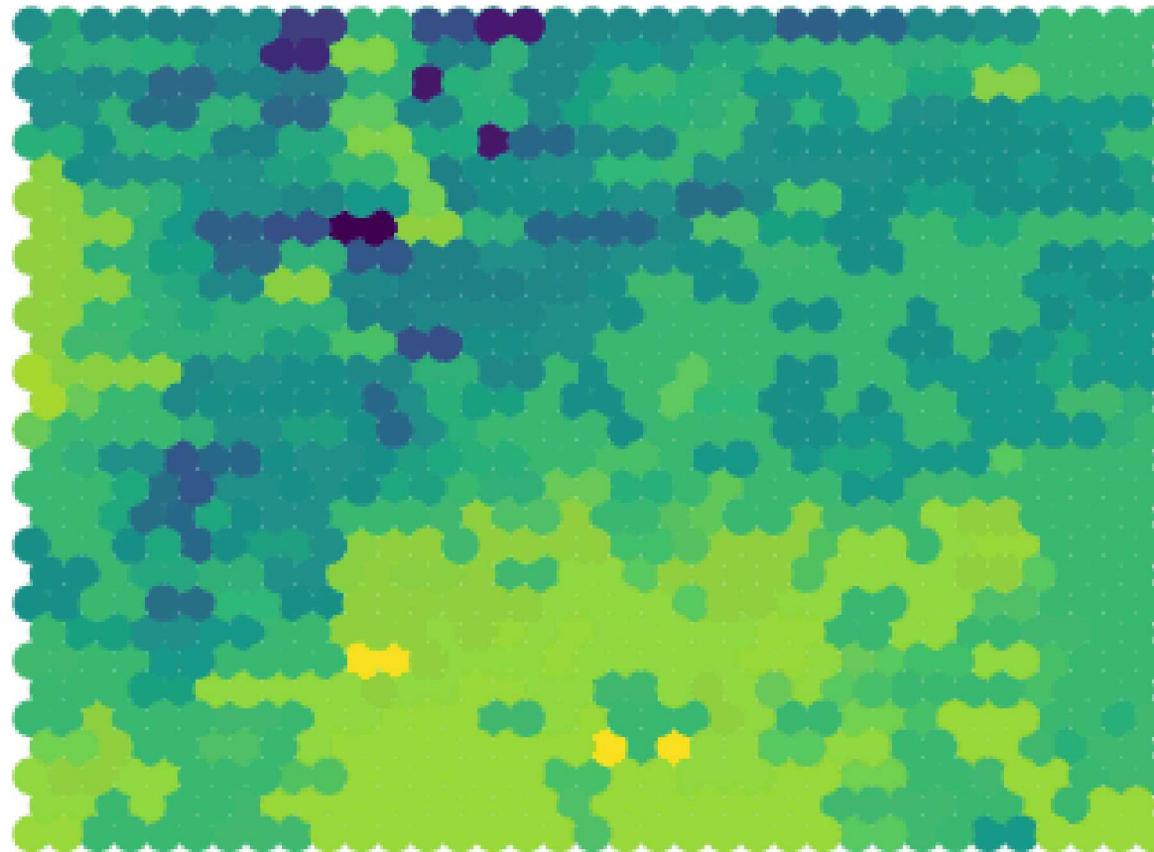
Game Play Block Diagram



Monte Carlo Tree Search (MCTS) Block Diagram (Game Play Turn)



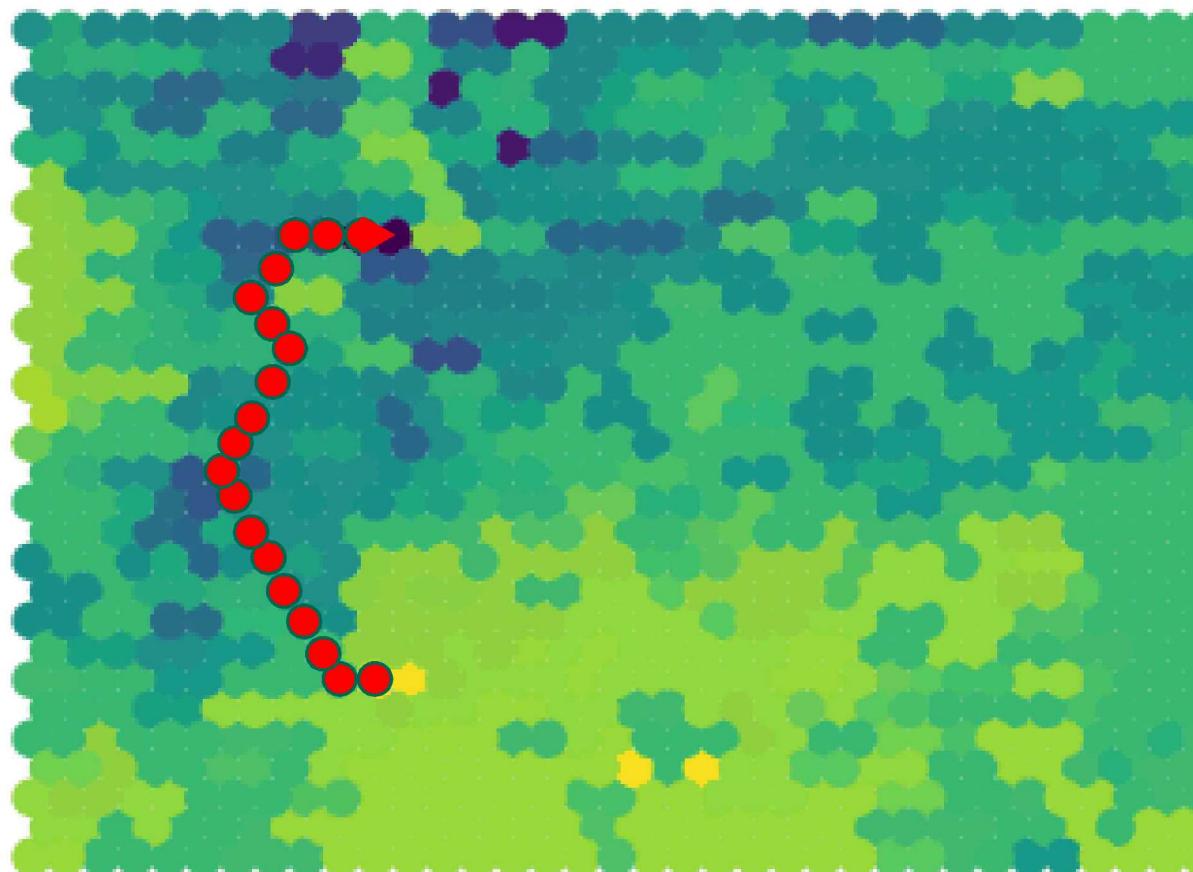
Structure (of Grid State Data) infers validity of Machine Learning Approach



15-dimensional grid state data of 1,001 precomputed points flattened onto a 2D hex grid for visualization. Light yellow represents high stability scores, dark blue represents low stability. The plot shows spatial correlation and bounded stability regions, validating a machine learning approach!

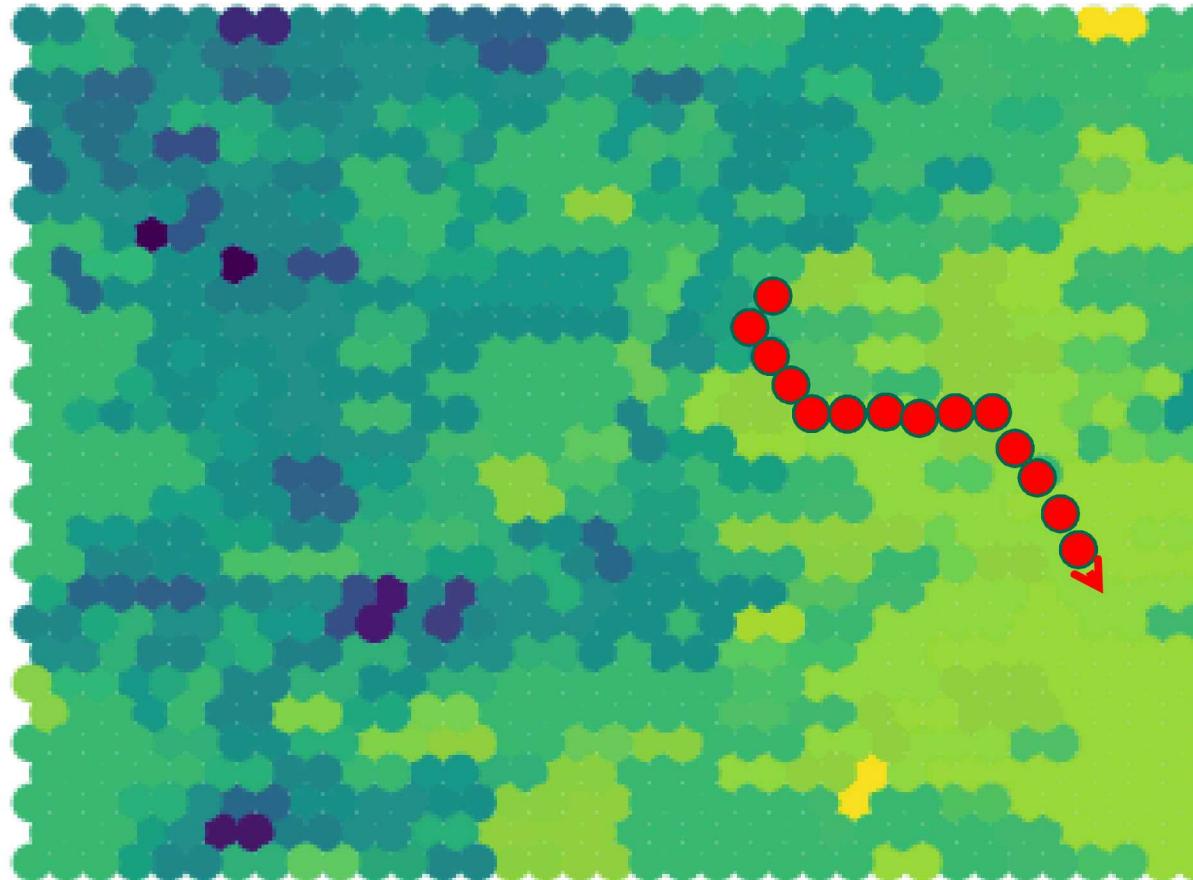
AlphaGrid – playing the game (attacker)

On its own an attacker would play a trajectory from good (yellow) to bad (blue)



AlphaGrid – playing the game (defender)

On its own a defender would not necessarily play a trajectory from bad (blue) to the nearest good (light yellow) but rather would choose good within a group of other good (yellow within a sea of yellow)



Outline

- Project Purpose
- Significance & Impact
- Technical Approach
- Technical Accomplishments
- Conclusions/Summary
- Future Effort
- Acknowledgments and Contacts

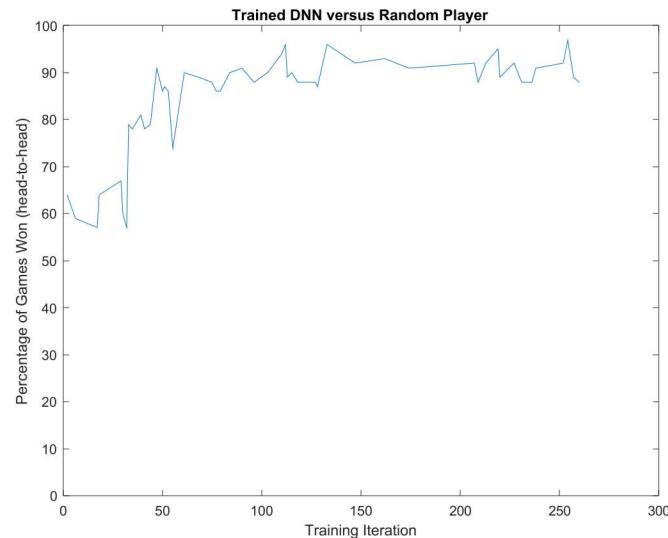
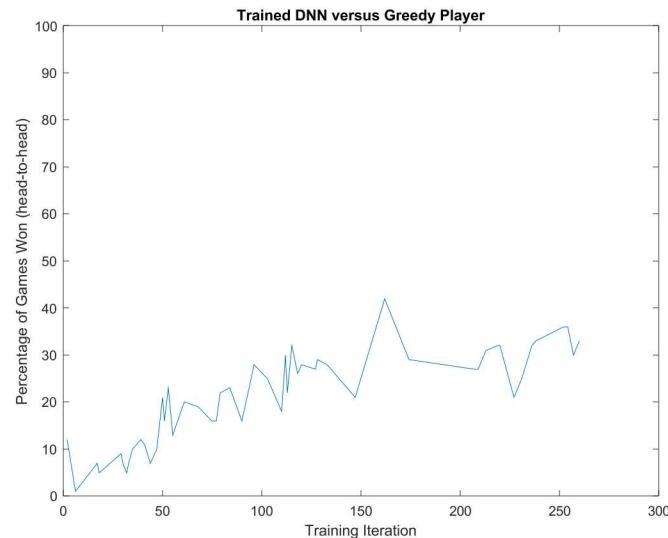
AlphaGrid Learning Results

Grid model operator comparison

- Trained vs Random – average 89.6% of the time Trained out-performs Random (in last half of training iterations)
- Trained vs Greedy – average 26.6% of the time Trained out-performs Greedy (in last half of training iterations)

Random here refers to choice of next state from current, where a random choice (without repeat) reachable from the current state is chosen

Greedy here refers to choice of next state from current, where the most stable next state reachable from the current state is always chosen



Outline

- Project Purpose
- Significance & Impact
- Technical Approach
- Technical Accomplishments
- Conclusions/Summary
- Future Effort
- Acknowledgments and Contacts

Conclusions

- Demonstrated feasibility of approach
- Verified learning shows improvement in comparison to
 - Random state walk
 - Greedy state transition
- Just getting started

Outline

- Project Purpose
- Significance & Impact
- Technical Approach
- Technical Accomplishments
- Conclusions/Summary
- Future Effort
- Acknowledgments and Contacts

Key Research Challenges

- Scalability of State Space Dimensions- Map reduction without losing fidelity
- DNN partitioning – Provides metadata, allowing insights into each solution (geography, type of constraint, etc)
- Modify solution from discrete space to continuous space
- Use of Transfer Learning- Allows a DNN to be trained for a specific system without starting from a blank DNN
- Management of cyclical state transitions
- Evaluation of tool across multiple scenarios- checking solution accuracy against many constraints

Project Goals for 2019

Each year a demo will be conducted, and a paper will be submitted for publication

Year 1 (2019)

- Construction and validation of a state space map at approximate control dimensionality of \mathbb{R}^{20}
- Demonstrate operation of the ML decision process using the reduced WECC system and perform solution verification using dynamic power system analysis.
- Start the development of state space compression methods.

Outline

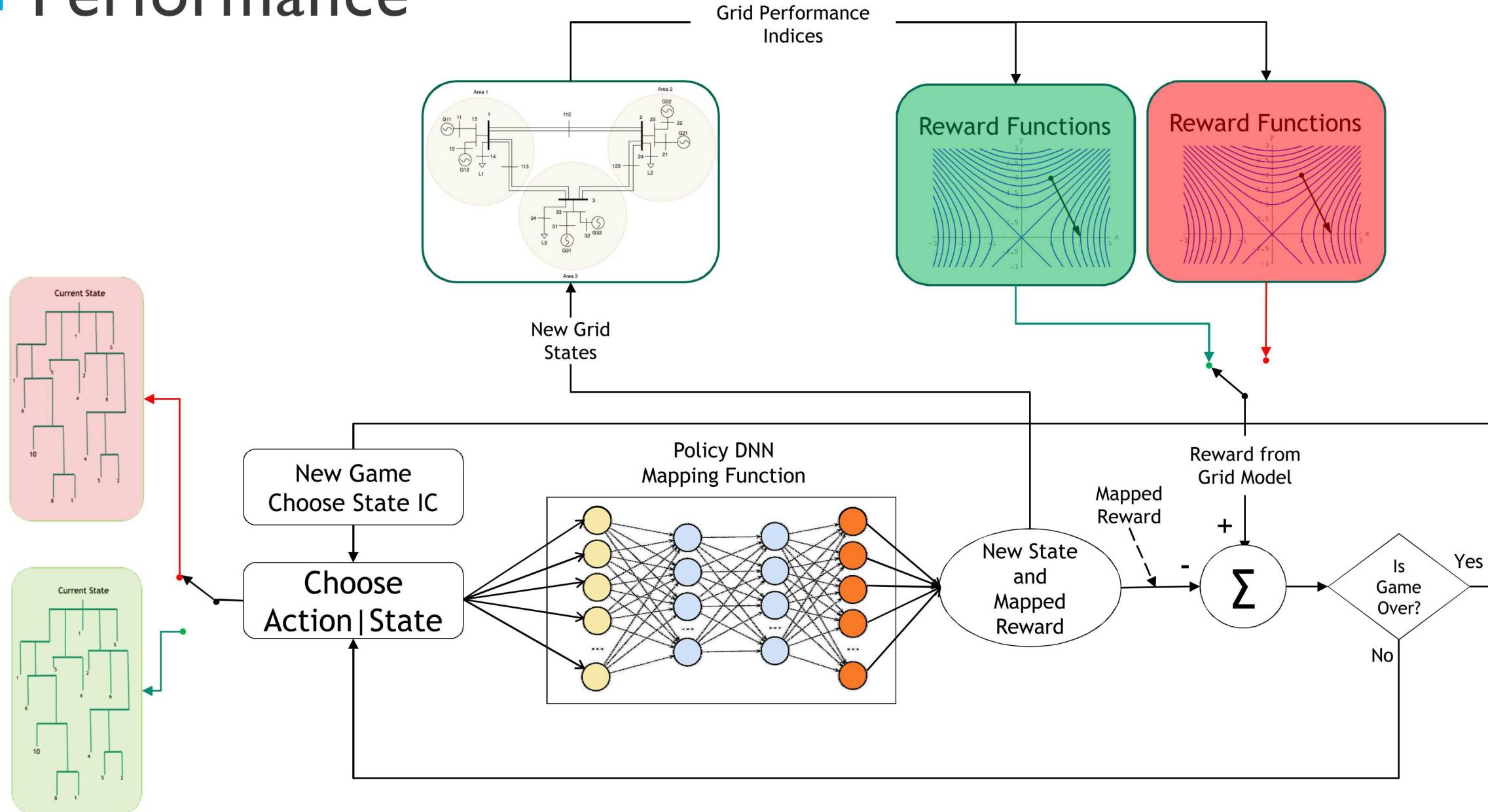
- Project Purpose
- Significance & Impact
- Technical Approach
- Technical Accomplishments
- Conclusions/Summary
- Future Effort
- Acknowledgments and Contacts

Our Team – Sandia

- Ross Guttromson (co-PI)
- Stephen J. Verzi (co-PI)
- Christian “Birk” Jones (grid modeling)
- Asael “Ace” Sorensen (deep reinforcement machine learning)
- Raymond “Ray” Byrne (PM)
- Charles “Charlie” Hanley (Senior Manager)

Questions?

Performance



Proposal Details (Deliverables to be Reduced by 2/3)

Each year a demo will be conducted, and a paper will be submitted for publication

Year 1

- Construction and validation of a state space map at approximate control dimensionality of \mathbb{R}^{20}
- Demonstrate operation of the ML decision process using the reduced WECC system and perform solution verification using dynamic power system analysis.
- Start the development of state space compression methods.

Year 2

- Develop and apply state space compression methods.
- Exercise the tool for multiple scenarios, each requiring a sequence of stable state space transition solutions, demonstrating feasibility at approximate control dimensionality of \mathbb{R}^{40}
- Start investigation to increase scalability using transfer learning methods.
- Start the development of methods to implement this process in continuous space.

Year 3

- Improve scalability to approximate control dimensionality of \mathbb{R}^{60}
- Implement the development of continuous-space solutions
- Utilize transfer learning to train the SoCo DNN.
- Implement the DNN as partitioned blocks to yield meta-information about the solution.
- Identify the steps necessary for the deployment of a real-time operational tool.