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Physical Vapor Deposition (PVD)

 PVD is a process used to deposit thin
films of elements, compounds or
molecules.

 PVD uses a heat source to evaporate
the material of interest, which is then
deposited onto a substrate.

* PVD enables creation of unique
microstructure and morphology

compared to pressed explosives. o osion e
OZN\O NO,  Custom high vacuum chamber
O for PVD of energetics (top) and
>< schematic of deposition
O process (bottom)
O:N O-No,  [Knepper 2014]. ;
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Typical explosive manufacturing methods do
not allow controlled variation in microstructure

 Local variation in
microstructure is common
[Knepper 2011].

Comp A-5 Pellets PETN Pellet Microstructure [Wixom 2008].
[https://explosives.k2si.com].
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Morphology of PVD explosives can be controlled by

deposition conditions

o Silicon substrate Fused silica
. Fused silica
. ] Silicon substrate substrate With 300 nm Al substrate with
Increasing film layer 300 nm Al layer

e

Thickness A

[Knepper 2011]
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Microcracking can occur in high density
pentaerythritol tetranitrate (PETN) films

. Films deposited onto 7477 -
substrates with higher
surface energy:

— Have higher density.

— Have an increased
detonation velocity
[Forrest 2017,
Knepper 2018].

| & ¥ ""r:-.' 7

i o v Py il [ i G
X Width = 100.0 pm Aug 2017

. C5_—25 PETN!Sl |'°'"" | 0.700 kY Stage atT= 300°  Mag> Polaroid 545
« Effect of microcracks — | | "
= Scanning electron micrograph (SEM) of dense 10 pm thick
on detonat’on PETN film on silicon substrate. Note cracking from

propagation in thin residual thermal stress.
films is unknown.
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Detonation can fail at a length scale

referred to as the critical dimension

 Typical critical dimension measurements are performed
on cylinders.

* The critical thickness of a slab has been shown to
roughly be equal to the critical diameter of a cylinder
[Gibbs 1980, Campbell 1976, Dobratz 1985, Starkenberg
1998].

 PVD can create films close to their critical thickness
[Knepper 2011, Tappan 2010, Tappan 2012].

— Allows for study of films at near failure conditions.
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Research here is to understand effect of

microcracking on detonation failure of PETN

« Implementing artificial gaps between two films to
determine size of gap detonation can propagate across.

» Using image processing techniques to extract position
and velocity data.

* Modeling the PETN films with CTH.



PETN films were deposited onto

polycarbonate substrates
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« Unconfined PETN films were deposited at a thickness of:

— 200 ym.
— 400 pm.

Initiator Side on view
system

PETN PETN 200-400 ym
Substrate Substrate 500 um
1cm
Top down view
Substrate Substrate
[T PETN PETN 4|mm 1cm
system |
Substrate Substrate

Top down view of PETN films with 95 um gap.

Variable gap width
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PETN films with a 1 ym-thick aluminum (Al)

confinement layer were deposited onto polycarbonate

. : nitiator S'de on V|eW
« Two configurations were used:

— An Al layer that remained in 0 4m

. are/oxidize bare/oxidized Al 1 um

Vacuum (bare alumlnum’ b Sbsrat - Sbstrate _500ppm
high surface energy). Tom

Top down view

— An Al layer that was exposed
to the atmosphere (OXidiZEd g = = ot
Al, low surface energy). hdsondwnchy | SPORRR ]

Substrate Substrate

« Confinement was used here to ——
study the films at near failure
conditions.

— The effects of confinement
were not explicitly explored.

Substrate Substrate

10
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Refractive imaging visualizes shock in air

* Focused Shadowgraph
visualizes the second
derivative of the refractive
Index.

e Schlieren visualizes the
first derivative of the
refractive index.

Collimating Focusing
Light Lens Lens D #

Source l , Camera
Schlieren image of a PVD PETN film
l detonating.
oS g el
Refrellctive
Medium y

Focused shadowgraph system.
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Imaging setup for measurement of the shock front

» Specialised Imaging SI-LUX 640 | | v
spoiled coherence laser used as light -';<H01) i
source for test. / l \-<— P

« Camera was a Specialised Imaging
SIMX-15.

— Camera is capable of recording 15
full resolution images at a frame —

rate of up to 1 billion frames per Test Series 2 schlieren with a horizontal
second. field of view (FOV) of ~5.2 mm.

« Test was conducted in two series.

— First test series used focused
shadowgraph.

— Second test series used schlieren.

« A1 mm x 1 mm square calibration grid
was used for converting pixel location
to spatial location.

PETN Film fixture inside BoomBox.
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Detonation tests to determine PETN failure

Estimated camera
field of view

————

* Detonation tests include:
— Continuous film test. PETN

b s e — —

Substrate

- Gap teSt 3cm

— Infinite gap test. Sbere
. Initiator A
Estimated camera system PETN L mm 1cm
= field of view
Initiator L — Substrate
system B |
! } Continuous film test.
PETN | | PETN 70-400 ym ,
| - E—— Estimated camera
Substrate Substrate 500 um Initiator field of view
system B |
1cm | |
PETN | |
oy I
Substrate Substrate Substrate
_‘ | 1cm
Initiator PETN PETN 4mm 1 cm
system | Substrate
Initiator T
Substrate Substrate e PETN j-_mm 1cm
Variable gap width Substrate 13

Gap test. Infinite gap test.
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/0 um-thick continuous film test

14
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/0 um-thick continuous film test

 The 70 ym-thick aluminum
confined PETN films display a
rough shock front.

* The roughness could be
caused by porosity within the
microstructure.

« This effect is similar to Ramsay §

)

Schlieren detonation sequence of a 70 um-

rough shock front caused by thick Al confined film deposited on bare Al
small discontinuities in

explosives [Ramsay 1963].

15
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The shock produced by the 200 ym film is
significantly more uniform than the 70 um confined
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400 um-thick film — Successful initiation
across gap
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400 um-thick film — Failure to initiate across gap




The post detonation substrates provide a

supplementary indication of test results

« Detonation
propagation was
determined:

— Successful if
shock returned to
steady-state
shape.

— Unsuccessful if
shock front
became circular.

Failed detonation propagation.

19
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Image processing to extract spatial data

« A custom-developed image
processing routine was built to:

— Highlight the shock wave.

— Automatically extract and
measure:

» Shape.
» Spatial coordinates.
* Velocity.

« Canny filter [Canny 1986] alone
was sufficient for extracting
shock front in most images.

* Noisier images required use of
additional image processing
techniques.

Required step
- — — Optional step

Median filter, !
CLAHE, '

I roipoly, I
| imfreehand

20



Normal velocity method for determining

velocity of a pressure driven flow

NEW MEXICO TECH

* Velocity of shock wave is
calculated from spatial data in
successive frames [Chapra
2015].

 New method for automatically
determining shock front
velocity was developed that:

— Calculates velocity in
direction of dynamic
pressure driven flow.

SF 2
SF_1 }) _
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Normal velocity plots were made to visualize

velocity of the shock front

* The plots are color coded to specify velocity.

» Black vectors are rejected due to an uncertainty in slope
matching > £ 50 m/s.
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ontinuous film test with transient shock
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Transient velocity is an indicator of when

detonation reached steady-state

« The velocity of the shock front

. Initiator “—0 p I ane
increases as the shock front reaches -
Steady'State . Substrate Substrate 500 pym

* The height of the steady-state velocity
was recorded for each of the tests at:

— The vertical plane representing the [ s || sweree
beginning of the gap (0 plane).

Variable gap width

T T 8000 T r T 8000 = = = = = 8000
35 35F 35
E 3k D, : ! [‘ A / 7000 E s E 4
@ 4 _f _ o) ™ B =
Ezs-\ 2 j/ =2 8000 E .{:%2.5- \\g §25_ eooo‘g
3 Ve ey E 2z 3 z 3 >
E 2 QUCES = {5000 § g 2f 5 2f 08
£ 4 U = 3 = o £ 3
L; 15F £ o ! = § t 15F 2 L; J %
T R g 5 E 5™ o 3
<.} @ | § 2 | 5 = £
% | > a0 < % % El S z
£ osf L osf st
2000 2000
T % PR %2 o R 1 : .
Distanc:e From IIBeginning of Gap (n.1m) Distance. From B.eginning of Gap (m.m) Distance From Beginning of Gap (mm)

70 pme-thick film deposited on 70 pme-thick film deposited on L

o ) : 200 pm-thick film.
oxidized aluminum. bare aluminum. 24

1 mm above the film surface. 1.5 mm above the film surface. v
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Successful initiation

« The distance the shock front traveled
before returning to its steady-state |
wave shape for a:

— 200 um film with a 25 ym-gap-
width was about 875 um.

n

— 400 MM film with a 220 MM-gap- Schlieren imagesfa400 um-thick

L]
width was about 1700 um. film gap test.
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25
200 pm film velocity plot. 400 pm film velocity plot.
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Critical gap width is the |argest gap width for

reliable initiation

* Neither of the 70 um-thick Al confined films propagated
across an abutment gap.

— Close to critical thickness of Al confined films (55 uym)
[Knepper 2018].

« The 200 and 400 um-thick films both had detonations
occur in gaps larger than the critical gap width.

— May be due to roughness at edge of films.
— No detonation failed below critical thickness.
Film Thickness (um) Critical Gap Width (um) Substrate Material

70 0 Oxidized aluminum
70 0 Bare aluminum
200 80 Polycarbonate

400 180 Polycarbonate 26
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200 pm-thick film infinite gap test
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The velocity of the shock front within the gap

is determined with the infinite gap test

Normal Velocity (m/s)

Distance From Beginning of Gap (mm)

28
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Hydrocodes numerically solve conservation

equations

« CTH is an Eulerian hydrocode developed by Sandia
National Labs.

« Hydrocodes typically use composite models to describe
an energetic material.

« The composite models relate two equations of state
(EOS) that describe:

— The unreacted material properties.
— The reaction product properties.

« The composite model relates the EOSs using an
empirically derived burn rate.

29
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2-Dimensional CTH model of PETN films

« The model consisted of:
— PETN initiator (Jones Wilkins Lee (JWL) EOS).

— PETN films with history variable reactive burn (HVRB)
composite model:

* Mie Gruneisen solid EOS.
« Sesame tabular reaction product EOS.

Bl PETN Initiator PETN | PMMA . air
9 I
= 8
‘g-' ? Imaged
> 6 FOV
5" i
0.5 1 1.5 2 2.5

30
2D model of CTH simulations. X (cm)
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CTH density output

31




Schlieren images are the first
derivative of the refractive
index field.

Density, p, is linearly
proportional to the refractive
iIndex, n.

_n—1
P="%

k is the Gladstone-Dale Coefficient.




CTH continuous film test

« The detonation velocity was calculated

for each of the continuous film tests.

* The calculation of the detonation
velocity was performed by:

— Manually clicking on the shock
front along the edge of the film on
successive frames.

« Atotal of 9 centered difference velocity

calculations were performed for each

test.

« The mean and standard deviation of
the calculations is reported below.

Expt. Film Thickness | Detonation

/ CTH (um) Velocity (m/s) [Substrate Material
Expt. 70 7450 £ 116 |Oxidized aluminum
Expt. 70 7910 £ 53 Bare aluminum
Expt. 200 7651 £ 197 Polycarbonate
CTH 200 7319 + 88 PMMA

NEW MEXICO TECH
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200 pm-thick films were modeled with CTH

 The models were calibrated to initiate at a 200 pym-thickness.
— HVRB

 Calibration constants [Starkenberg 1998]
— Pr=1e10
— 7=3.9
— PI=4e10 Threshold pressure for reaction

— Mie Gruneisen
 rho=1.5 Density of PETN

— Tuned until critical thickness was roughly that of experiment.
« The critical gap width of the CTH tests was found to be 125 um.

Film Thickness Critical Gap
Expt./ CTH (um) Width (um) Substrate Material
Expt. 70 0 Oxidized aluminum
Expt. 70 0 Bare aluminum
Expt. 200 80 Polycarbonate
CTH 200 125 PMMA
Expt. 400 180 Polycarbonate 34
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Successful initiation video 125 ym gap
computer generated schlieren (CGS)
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CTH successful initiation comparison

* |In the experiments the outward protrusion in the shock
front after the detonation passes the gap is now in the
shape of a notch.

« The second film initiates almost immediately without
allowing the air shock from the first film to create an
outward protrusion:

— Due to a lower run distance in the CTH films.

- Outward
protrusion

Experimental image. CGS image. CTH density image. 36
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There is significantly less disruption to the

shock frontin CTH

8000

@
0

7000

w

* The disruption in the shock front
returns to steady-state rapidly.

6000

™
o

N

5000

-
o

4000

Normal Velocity (m/s)

* The distance to a steady-state
wave shape is significantly shorter

than in the expe riments. 7 Disiance From Beginning of Gap (mm)
200 pm-thick film experimental gap test

3000

Height Above Film Surface (mm)

o
tn

2000

with a 25 pm-gap-width.
Film Thickness . Distance to steady - . : 8000
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o
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T
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0
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200 pym-thick film gap test with a 100
Mm-gap-width.



Density image at t=1407 ns

Detonation in film is seen in CGS
iImages with a histogram shift.

At t=1407 ns, film has already
Initiated and detonation
propagates outward.

At t=1418 ns, detonation
emerges from film surface. t=1418 ns, Diﬁﬁiﬁ“’“

— Detonation is significantly “ emerges

t=1407 ns:Detonation

Air shock

A / /
o Inert
[b <~————— shock in

explosive

from film
behind the air shock.

surface
At t=1425 ns, detonation catches [FZuEn Detonation

\7, O\ shock

up with air shock from initial film. catches
'. up with

air shock
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CTH infinite gap test

« There is a significant drop in velocity above and below the
film height, that is not seen in experimental images.
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15 . 15} @ <
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Distance From End of Film (mm) Distance From End of Film (mm)

CTH infinite gap velocity plot. Experimental infinite gap velocity plot.

39



NEW MEXICO TECH

The trend between the CTH and

experimental data matches fairly well.

« Computational data £
trend was slightly
lower than trend of  © RES 1
experimental data. ~ ° B RE

— Expected since the 2D..i{’anceFroﬁ’n”emmm(mm) o s
Experimental data CTH data

200 uym-thick PETN

films in secof o o D et
experiments had a N S |
higher detonation @ 500l -

‘-—E’ 0 |} |}

velocity than 200 S|
um-thick PETN g ’ '

. . . . 6500 m O O
[ |
films in simulations. 0 "t o
6000 O O !
(] [ .D
[ |
5500 | . - 5
5000 1 1 |
0 0.5 1 1.5

Distance From End of Film (mm)
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Experiments and computations were performed to

visualize PETN films detonating across microcracks

* A new image processing algorithm was developed to:
— Extract spatial data.
— Quantify velocity:
 Locally across dynamic wave shapes.
» Of a pressure driven flow.
« CTH model provided further insight of experiments.
* As aresult:
— A critical gap width was determined.

— Cracks were found to cause a large disturbance in
the shock front.

« Significantly larger than the crack itself.

41
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Future work

« Perform statistical analysis to ascertain repeatability of
gap test results.

* Develop an algorithm to calculate the average
uncertainty in velocity found in the normal velocity plots.

42
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Gap Test Failure Tables

70 pym-thick film failure table 200 pm-thick film failure 400 pm-thick film failure
table table
Film Gap Detonation Film Ga Detonation Film Ga .
Thickness (um)[ Width (um) | Propagation Substrate Thickness (um) WidthFZum) Propagation| | Thickness WidF’ih Detonat|.0n

70 0 No Oxidized Al 200 25 Yes (um) | (um) |roPasation
70 0 No Bare Al 200 25 Yes 400 80 Yes
70 10 No Oxidized Al 200 25 Yes 400 100 Yes
70 10 No Bare Al 200 25 Yes 400 125 Yes
70 25 No Oxidized Al 200 25 Yes 400 160 Yes
70 25 No Bare Al 200 50 Yes 400 180 Yes
70 50 No Oxidized Al 200 50 Yes 400 180 Yes
70 50 No Bare Al 200 75 Yes 400 200 Yes

200 75 Yes 400 200 No

200 80 Yes 400 220 yes

200 75-120 Yes

200 93 No

200 95 No

200 100 No

200 110 Yes

200 110 No

200 170 No

Note: the film with the gap
width of 75-120 um is due to a
rough edge.
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Rounded Edges of PETN Films
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Computation of the Derivative of the Density Field

* A center difference numerical dX  Xpip — Xnp
derivative can be performed dy 2h
with the equation shown.

» Spatial Filtering [Gonzalez
2009] can be used to perform
the numerical derivative.

« Spatial filtering is performed
by applying a mask
composed of multiplication
factors, C,, to a region of
pixels on the image.

* Applying the mask shown on
the bottom yields the same
answer as the numerical
derivative shown above.
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Unconfined PETN Critical Detonation Thickness

PETN Film Thickness (mm)
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Detonation is a rapid combustion driven by shock
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Burn Rate Calibration

 The burn models are typically calibrated with shock-to-
detonation experiments, such as the wedge test
[Menikoff2010,Starkenberg2002].

 The wedge test is used to determine the run distance
versus input pressure.

 The run distance is the length an input pressure needs to
travel before initiation.
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Mesh resolution was 8000 x 2000 cells.
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2D model with 80 x 20 mesh grid overlay. Each cell represents a 100 x 100 cell 55
grid.





