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Overview
■ Intro and Background

■ What are the major engineering challenges associated with nuclear
waste disposal?

■ Types of Seals — materials and functions

■ Case Studies

■ Nuclear Waste Disposal

Background on waste inventory, disposal concepts, etc.

Seal design evolution at WIPP

■ Wellbore Integrity during Geologic Storage of CO2

Seal repair development and performance

Microannulus evolution and permeability

Geomechanical modelling to predict in situ stress and strain

■ Conclusions, ongoing, and future work
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Seals are guardians of conduits that pass through
stratigraphy — without seals there is potential for direct
communication between subsurface, hydrogeologic

units, and the surface

Wellbore Seals

4,..14-....h.11.0%
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Shaft and Drift Seals
Engineered Barrier
System Components



Seals are typically composed of:

■ Cementitious materials (cement, concrete, shotcrete)

■ Class G or Class H wellbore cement

■ Low pH Portland cement (pozzolans to achieve pore sol'n pH < 12)

■ Bentonite

■ primarily smectite

■ Swells when wetted

■ Cation getter

■ Backfill

■ Compatible with and/or composed of host rock, as well as
hydrogeologic units along the stratigraphy of a shaft seal

■ Other getters

■ Anionic getters, zeolites
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Case Study #1 Shaft and Drift Seal
Designs for Disposal of Nuclear Waste



Nuclear Waste Background

• Broadly speaking, there are two "types" of waste:
• Spent Nuclear Fuel (SNF) — Fuel rods from the reactor

Commercial SNF — CSNF compromises >95% (by mass) of SNF waste

Defense SNF — DSNF

• High Level Waste (HLW) — products from processing materials

associated with US Defense-related activities

Vitrified Glass

• Typically, waste is classified according to the activity from
which it was produced:
• Commercial (CSNF)

• Defense (HLW and DSNF)
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Radioactive Waste Volumes
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What is Spent Fuel?

• Wet vs. dry storage

• -75% in wet storage
• Post-Fukushima, the rate of

transfer from wet to dry

storage has increased

Pool Storage

from nrc.gov

Dry Storage

from connyankee.com

Fuel Red

From Werner 2012

Fuel Assembly
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Where is Spent Fuel located?

Locations of Spunt Nuclear Fuel and

High-Level Radioactive Waste'.
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Disposal Concepts

Mined repositories in clay/shale (ANDRA 2005)
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Seal functions and challenges the
repository environment

• The seal blocks potential
preferential flow pathways,
created by excavation of
tunnels, shafts , and drifts

• Needs account for the
excavation damage zone (EDZ),
e.g. design will have break-outs
to seal pathways in the EDZ

• Achieve both short-term an
long-term isolation needs

• Cement

Short term hydraulic barrier, easy
to emplace, setting shrinkage

• Clay long-term stability, sorption,

swelling

EPSP experiment

Concrete

Filter

Concrete
blocks

Fibre
shotcrete

In ecticn
chamber

Water • roofing

Bentonite Concrete
pellets blocks

,,,,),I2FIL974

From J. Hansen et al. 2016

From DOPAS 2016
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Challenges to Seal Durability/Integrity

■ Thermal

■ Spent fuel generates A LOT of heat (— kW)

■ Chemical durability
■ Complex near field chemical environment (connate brine, evolving

geochemical milieu, long timescales, subsurface heterogeneity)

■ Waste form degradation, waste package corrosion, complex
chemistry/geochemistry

■ Mechanical durability
■ Convergence of excavations

■ Weight of waste packages

■ Discontinuous mechanical processes, e.g., roof-fall

■ And, oh yeah, the above can lead to ... Coupled processes!!!
■ Introduces a considerable amount of uncertainty
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Performance Assessment (PA Models)

• Performance Assessment (PA)
Modeling
• Use standard reference:

geology

Repository design

• Assess long-term post-closure safety

• Thermal-hydrological-chemical

processes simulated via PFLOTRAN

PFLOTRAN

1-129 concentrations

Time: 1 ClOCCO Years

Sevougian et al. 2016
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Case Study #1 - Outline
■ Seals for a Salt Repository

Salt backfill

Compacted salt, Clay, Asphalt

Salt concrete, Ultrafine grout

• History of Seal Tests in the US

• WIPP Borehole Plugging Program

Predecessor - Salt Vault Program (early 1970's)

ERDA No. 10 (1977)

Bell Canyon Test (1979)

Waterways Experiment Station (WES) Grout Studies (70's and 80's)

• Small-Scale Seal Performance Tests (at WIPP)

• WIPP Seal Design vs. Salt HLW Repository
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Waste Isolation Pilot Plant (WIPP) Background

Carlsbad
Cavern

National
Park

of/. 11;f: Paxo

a ,

El
ev
at
io
n 
(
m
)
 

New Mexico

Texas

SW

1000

750

500

250

Sea
Level

-250

Ground Suface

Gatun-a Formation

Affar
ssssssssssssssss

Aloe PWAVI0&,•

Surficial Deposits

NE

Dockum
 Group 

Dewey Lake
Red Beds

Rustler
Formation

Culebra - 
Rustler-Salado Contact

--------------------------------

McNutt Potash Zone

r

r

Repository Level

Sand and Sandstone

Siltstone and Sandstone

Mudstone and Siltstone

V/ A

Salado
Formation

Castile Formation

Bell Canyon
Formation

Anhydrite

Halite

Limestone



VVIPP Facility and Stratigraphic Sequence
SALT STORAGE PILES

SALT HANDLING
SHAFT

AIR INTAKE SHAFT

WASTE HANDLING
SUPPORT El LACING

EXHAUST SHAFT

EWING PAIIIL 1

PANELS 2-0
NOT YET EXCAVATED

e
,

-411., 2/
...
.1,

- ". ,,,, ‹... e .....,e 1 / ' 7e / 
/ 

. e'

' .. / 
/

-. . / _..,
ag IV

I

—..../— . . . __a 

, ..
a. • e. 1.-.

E.,

-..., 
/

GAMMA
ab n.

sAhrrA ROSA
2E4 tL

OVIEY LA Ice
no- 554

RUSTLER
275

SALADO
1750 2-400

REPOSITORY

CA &TILE
1250

SELL CALIVVONI
1090 11.



Small-Scale Seal

Performance Tests (SSSPT)
• WIPP Experimental Area - Rooms L, M

• Vertical and horizontal boreholes

• Expansive Salt Concrete (ESC), Salt blocks,

salt/bentonite blocks and backfill, ultrafine

grout (F series)

Test Series Schedule
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D

E
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concrete
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concrete
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SSSPT

Configurations
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SSSPT Highlights, 1/2

• SSSPT Tests provide confidence to Performance Asessment in the

form of in situ data on permeability and mechanical performance

Tab* fi f. Summary of SSSPT Seal System Pemeabifities

!

I Test fluid
Concrete

permesbility (m2

Concrete

Permeability (m2)

$0%/50%
 Salt/bentonite

Permeability (m2)

I00% Bentonite 
!

Permenbility (m2) I

Test Perrod - (1985-1987) (1993-1995) (1986-1990) (1988-1995)

Gas 
- - 

10-17- 10-215 I 0'19 - lel ! - see Figure 3

Brine -10-19 10 - Urn - 106 -1019

From Knowles and
Howard 1995
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SSSPT Highlights, 2/2
■ Expansive Salt Concrete Seals

■ Exhibited sub-microdarcy permeability for both gas and brine (9 seals tested)

■ Flow path decreased within a year of emplacement (tracer test)

■ Emplaced using commercial equipment

■ AND optimized for key operational attributes including:

slump, limited bleed, segregation, limited air entrainment, self-leveling
behavior, and workability

■ BUT..., in the late 80's the expansive agent became commercially unavailable
(enter Salado Mass Concrete)

■ Lessons learned with respect to cement formulations (from Wakeley 1987)

■ Simpler is better ... for prediction, batching, sourcing, etc.

■ Working time is a critical property

■ By the late 80's, it became evident that concrete (not grout) would play a
central role at WIPP as components in the sealing system for bulkheads and
drift, panel, and shaft seals - as opposed to the primary seal

Lifetime requirements on the order of 100 years instead of 10,000 years
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Cementitious Seals Test 1/2
■ Key issues for Cementitious Seal Performance Evaluation

■ Autogenous shrinkage of seal (during setting)

Gap formation at cement/salt interface

Crack formation in cement plug

■ Heat output of mass concretes

Crack formation in cement plug

■ Material selection (i.e., Sorel cement, salt concrete, low pH?)

■ Effects of salt host closure on the seal

■ Why do a field-scale test of seals in bedded salt

■ Most recent field tests have been in domal salt (saltcrete, Sorel)

■ Bedded salt tests at WIPP - Small Scale Seal Performance Tests Series
A, B, C

Used a very specific formulation of "Expansive Salt Concrete"

Key ingredients are unavailable and potential difficult to reproduce
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Cementitious Seals Test 2/2
• Relevant Tests in Domal Salt

• Lab-scale Tests for DOPAS (Czaikowski et al. 2016)

• ERAM Test Seal - salt concrete

• Asse tests - Sorel cement and salt concrete
From Czaikowski
et al. 2016

• Create a seal test at WIPP with the concept of a potential
HLW Salt Repository in mind (with relevance to some generic,
bedded salt site)

• Measure borehole closure and permeability of the seal
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BATS Test Instrumentation
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• Two identical arrays
• Heated (120 C) and Unheated

• Behind HP packer (right)
• Circulate dry N2
• Quartz lamp heater (750 W)

• Borehole closure gage

• Gas permeability before / after

• Samples / Analyses
• Cores (X-ray CT and fluorescence at NETL)

• Gas stream (natural / applied tracers, humidity and isotopes)

• Liquid brine (natural chemistry and natural / applied tracers)

• Geophysics
• 3 x Electrical resistivity tomography (ERT)

• 3 x Acoustic emissions (AE) / ultrasonic travel-time tomography

• 2 x Fiber optic distributed strain (DSS) / temperature (DTS) sensing
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BATS Borehole Layout, SL = Seal Borehole

BOREHOLE HEATER TEST CONFIGURATION (FINAL 02/18/2019)
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Preliminary Seal Test in BATS

• Seal materials to test

• Salt concrete

• Sorel cement

• OPC?

• Embedded strain gauges

• Thermocouples

• Post-test overcore and
characterization

• Ultimately, would also eant to
measure seal permeability in
situ, as done in SSSPT
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Case Study #2 Wellbore Integrity
during Geologic Storage of CO2



Case #2- CO2 Storage Project Overview

Goals: Predict/characterize Wellbore Integrity Evolution and 
Develop nanocomposite materials to repair wellbore seals in CO2-
injection environments

■ Experimental component

■ Bench-top experiments of integrated seal system in an idealized scaled
wellbore mock-up to test candidate seal repair materials

■ Computational component

■ Bench-scale numerical models to identify and evaluate the essential
hydrologic and mechanical properties of candidate sealants; gain
understanding of wellbore microannulus compressibility and
permeability

■ Field-scale model of a pilot CO2 injection operation to develop a stress-
strain history for wellbore locations

■ Wellbore-scale model  examines the impacts of various loading
scenarios on a casing structure
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Understanding wellbore leakage

■ What materials are available to repair existing wellbore
leakage?

■ What is the strength of these materials in comparison to cement?

■ How effectively can they seal existing leaks?

■ How easily can they be delivered to flow paths (specifically, flaws or
microannuli in the steel/cement interface)?

■ What is the hydraulic aperture relation to mechanical
stiffness?

■ What are the stress and displacement conditions at the casing-
cement interface?

■ What are the conditions in the field? (can vary with stratigraphy)

■ What conditions can be replicated in the laboratory?
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Well Integrity Project Highlights (1/3)

• Novel repair materials that are more robust and have superior
penetrability into cement-casing microannuli

umm••••pm•rd12•••••rat•ahhhodim h m..rm

Como+ lam reanlim

International journal of Greenhouse Gal Control

.1h.h.J1 •••• • •• • -•• • • • • • ...0.

new polywr nanoca,mpcisiie repair ma:trial for rtmaring wellbore
seqd imevi ty

IhkrirebEenr•dy • , Usa pm I. If-lay:he, GIME] H. Ma Ken • , Jam Mortal lard.J,
hlaleitgal MOJA LI n. " '

"blialii.1.11041.141 .n.10 0..1m.:* ohm! Wm ta.••••••qa••••1•••• hh1.111.111•1. mol
•04-•••••.y.•.-1..h. a a..11,.A.hvian-ma...111.1.1.411imillerMria..ner0

445

I .1

Ir

a I ci

*

13,44..1
I min

li.25 aim

:
■

Nikialat Unfrai N.....Int l.pasy

41.10 Enc.

NIMA

p)

LEM cam



Seal Repair Design and Evaluation

• Synthesis and
Characterization

• Bond strength
measurements

• Rheology
measurements

• Polymer and
nanocomposite
engineering

• Evaluation

• Seal mock-up

• Permeameter for post-
repair gas and liquid
flow measurements
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Well Integrity Project Highlights (2/3)
• Critical insights into the complexity of the microannuli contact

surfaces, esp. understanding how microannuli repsond to
deformations
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Well Integrity Project Highlights (3/3)

• Wellbore models coupled to field scale models of injection to
predict wellbore deformations
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Field-Scale Model
• Field-Scale computational

model for Cranfield, MS CCS
injection site (1.5 Mt over 1.5
yrs)

• Thermally active reservoir

coupled with pore

pressure caused by
dynamic CO2 injection

• Mechanical properties
(Kayenta porous media
plasticity model) of
injection layer obtained
from lab tests

• Coupled THM calculations

5000 m square
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Injection
borehole

 >X

4 boreholes,
spaced 100 m
from injection and
100 m apart

2600 m depth

3564 m depth

Selma Limestone (confining unit)

Upper Tuscaloosa (Saline aquifer)

Middle Tuscaloosa (confining unit)

Lower Tuscaloosa (injection aquifer)

Lower confining unit
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Field-Scale Model Results

• Field-Scale computational

model for Cranfield, MS CCS

site — 9 months of CO2
injection

• CO2 injection plume
extend significantly past

400m borehole

• Effective vertical stress
along casings can be made
tensile by CO2 injection
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27.00E+6
36.00E+6
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(9= -1.725E+3
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-24.00E+6
-16.00E4-6
-13.00E4-6

• 0.00E+6

Or -39.51E+6
4E- 8.41E+6

TIME 24.16E+6
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Wellbore-Scale Model
CO2 Injection

• Pore pressures, host rock strains
from field-scale model applied
to wellbore scale with steel and
cement liners, epoxy annulus

• Intent is to apply stresses/strain
environment induced from
injection process to microannuli
of different materials, evaluate
applicability under field
conditions
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Wellbore-Scale Model
CO2 Injection

• CO2 injection causes significant

porous expansion in Lower

Tuscaloosa, inducing large
lateral deformation in borehole

casing (-3 cm)

• Significant plastic strain in

cement, shear stress in steel
casing

• Epoxy microannulus material

would experience significant
strain, transmit shear stress to
casing; epoxies evaluated thus
far not yet tested to this
magnitude of deformation
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Conclusions

■ Laboratory scale experiments have developed data that represents
permeability of microannuli, strength of cement and epoxy sealant
materials

■ Field-scale model predicts stress-strain environment under which
epoxy will be subjected

■ Wellbore model can predict effect of field environment on sealants

■ Ability of epoxy to be effectively injected into microannuli
investigated

■ Model development continues, including eventual comparison of
predicted field stresses and displacement to available site data
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