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Why Application Detection ) S,
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= Su percomp uters Russian nuclear scientists arrested for
P 'Bitcoin mining plot’
* 100s of users, 1000s of projects f 0w E <o
e Submitted using hard-to-parse scripts :

e Binaries compiled elsewhere

= Current operators don’t know
which applications are running

M5F Russian security officers have arrested several ‘
scientists working 3t 3 top-secret Russian More News from
nuchear warhead facility for aflegediy mining Elsewhere




Benefits of Application Detection @&

= Significant body of work for application specific system
management
= | ower network contention [Bhatele et al., SC’'13]
= Lower power consumption [Auweter et al., ISC’14]
= Better management of resources

= Assign developers to most used application

= Decisions about the next generation system




Contributions )

= Taxonomist: A technique to identify running applications using
numeric monitoring data.
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= Evaluation on Volta with benchmarks, cryptocurrency miners,
normal system usage. Over 95% F-score
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Other Approaches

= Comparing application binaries (BinDiff) [Flake et al., DIMVA’04]
= Shown to be not accurate enough [Egele et al., USENIX Security’14]

= MPI calls, communication patterns

[DeMasi et al., CLHS’13, Whalen et al., Pattern. Recognit. Lett.”13]
= 5% overhead to intercept — Too high

= Power signatures [Combs et al., E25C’14]




Numeric Monitoring Data UL
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= Network/Hardware Counters

0 200 400 600 800 1000
= Challenge: . Time (s)

= Vast data volume: TBs per day, 100s of metrics

= Advantage:

= Covers many subsystems, separates nodes

= Readily available




Numeric Monitoring Data ) .
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= Applications are naturally split into groups by resource allocation

= Two metrics are not adequate to split many applications

= Thankfully we have more




Resource Usage Fingerprints
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= Clustering of 11 applications — unsupervised
= Each application has its own resource usage fingerprint

= Not perfect, but promising




Taxonomist: Data Collection
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= Collect data from applications of interest

= 100s of time-series per node




Taxonomist: Feature Generation
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= Use statistical features to summarize time-series

= Keep the trend, remove noise




Feature Extraction

Min, max, average Basic features

Percentiles 5th 25th 50th 75th g5th

Standard Deviation Amount of dispersion

Skewness Lack of symmetry 513" ¢ -uy

K_
Kurtosis Heaviness of the tails

N: length of time-series
{: mean
o: standard deviation
x,: value attime t




Taxonomist: Training UL

features ML models

B

= Machine learning models are trained per application
m One versus rest

= Tested with Random Forest, Decision Tree, SVM, Extra Trees

=  Parameter tuning: perform 5-fold cross validation within
training set

o Pick model parameters with best f-scores




Multiclass Classifier e,

= Observations from three classes

High confidence:
Definitely red

Low confidence:
Red or blue?




One vs Rest Classifier ),

= Observations from three classes /

Low confidence:
Not red o ©

O
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Medium confidence: /* o,

Probably not red




Taxonomist: Runtime
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= At runtime, take prediction confidence from every classifier

= |f confidence is under a threshold, mark as unknown




Methodology UL

= System: Volta— Cray XC30m supercomputer at SNL
= 52 nodes

= LDMS (Lightweight Distributed Metric Service [Agelastos et al., SC’14]
= 721 metrics per node every second
= <2 MB RAM usage per node, CPU overhead ~0.01%

= Baseline Method — Combs: [Combs et al., E25C’14]

= Only input is power consumption — already collected
= More features — serial correlation, nonlinearity, trend

= Random forest classifier, no support for unknown applications




Applications UL

= 3-4 input configurations per application, running on 4-32 nodes
= BT, CG, FT, LU, MG, SP from NAS Parallel Benchmarks [Bailey et al., j-1/SA’91
= miniAMR, miniMD, CoMD, miniGhost from Mantevo [Heroux et al., SNL’09]
= Kripke from LLNL Proxy Applications [Kunen et al., LLNL’15]

= 6 unwanted applications

= 5 cryptocurrency miners

= 1 password cracker




Evaluation ),

relevant elements
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* Harmonic mean of precision and recall
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selected elements

[Walber, Wikimedia, 2014]




Evaluation

= Train with 10 applications, test with 11
= Unknown application correctly identified
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Evaluation

= Train with one input configuration missing

= Unknown input correctly identified

f-score
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Confidence Threshold Selection ==

= For training set, perform two tests
= Remove one application from training, sweep over thresholds
= Remove one input from training, sweep over thresholds
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Evaluation e,
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Evaluation

Unwanted Applications

= Perfect classification

= Train with 11 applications 0 [___ JF :
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Summary

= A technique to identify applications

= Based on resource usage data
= Using concise features, low-overhead

= Qur technique outperforms existing methods

= QOver 95% F-score

= Artifact with data, code, more plots:
https://doi.org/10.6084/m9.figshare.6384248
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