

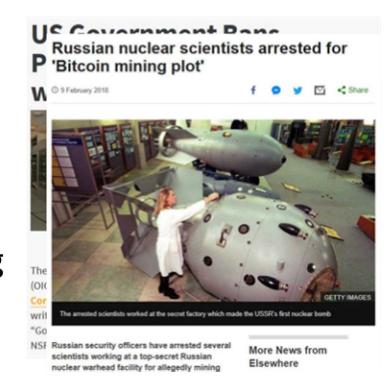
Taxonomist: Application Detection through Rich Monitoring Data

Emre Ates[†], Ozan Tuncer[†], Ata Turk[†], **Vitus J. Leung**[‡], Jim Brandt[‡], Manuel Egele[†], and Ayse K. Coskun[†]

[†] Boston University, Boston, MA [‡] Sandia National Laboratories, Albuquerque, NM

Why Application Detection

- Supercomputers
 - 100s of users, 1000s of projects
 - Submitted using hard-to-parse scripts
 - Binaries compiled elsewhere
- Current operators don't know which applications are running

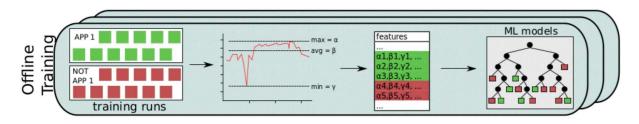


Benefits of Application Detection

- Significant body of work for application specific system management
 - Lower network contention [Bhatele et al., SC'13]
 - Lower power consumption [Auweter et al., ISC'14]
- Better management of resources
 - Assign developers to most used application
 - Decisions about the next generation system

Contributions

 Taxonomist: A technique to identify running applications using numeric monitoring data.



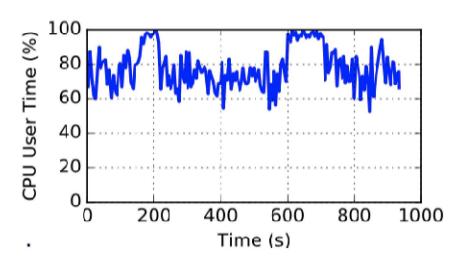
 Evaluation on Volta with benchmarks, cryptocurrency miners, normal system usage. Over 95% F-score

Other Approaches

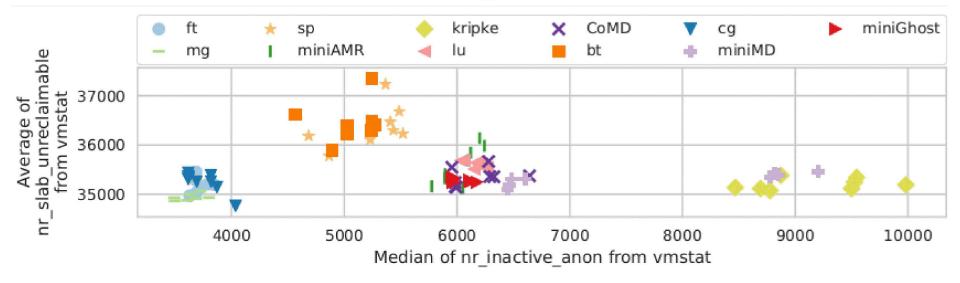
- Comparing application binaries (BinDiff) [Flake et al., DIMVA'04]
 - Shown to be not accurate enough [Egele et al., USENIX Security'14]
- MPI calls, communication patterns
 [DeMasi et al., CLHS'13, Whalen et al., Pattern. Recognit. Lett.'13]
 - 5% overhead to intercept Too high
- Power signatures [Combs et al., E2SC'14]

Numeric Monitoring Data

- Contents
 - OS Counters
 - System Utilization
 - Network/Hardware Counters
- Challenge:
 - Vast data volume: TBs per day, 100s of metrics
- Advantage:
 - Covers many subsystems, separates nodes
 - Readily available

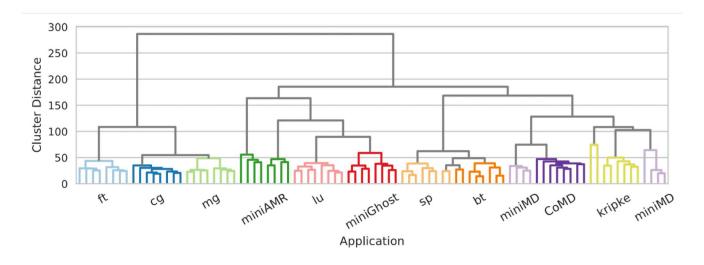


Numeric Monitoring Data



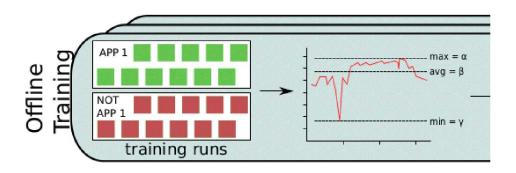
- Applications are naturally split into groups by resource allocation
- Two metrics are not adequate to split many applications
 - Thankfully we have more

Resource Usage Fingerprints



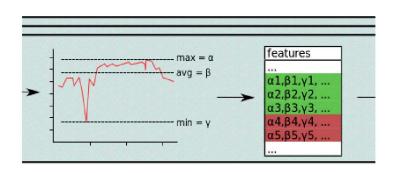
- Clustering of 11 applications unsupervised
- Each application has its own resource usage fingerprint
- Not perfect, but promising

Taxonomist: Data Collection



- Collect data from applications of interest
- 100s of time-series per node

Taxonomist: Feature Generation



- Use statistical features to summarize time-series
- Keep the trend, remove noise

Feature Extraction

Min, max, average Basic features

Percentiles 5th, 25th, 50th, 75th, 95th

Standard Deviation Amount of dispersion

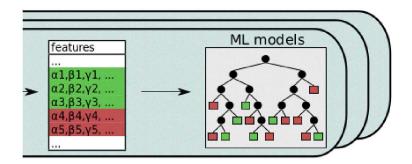
$$\sigma = \frac{1}{N} \sqrt{\sum_{t=1}^{N} (x_t - \mu)^2}$$

Skewness Lack of symmetry

$$S = \frac{1}{N\sigma^3} \sum_{t=1}^{N} (x_t - \mu)^3$$

Kurtosis Heaviness of the tails $K = \frac{1}{N\sigma^4} \sum_{t=1}^{N} (x_t - \mu)^4$

Taxonomist: Training



- Machine learning models are trained per application
 - One versus rest
- Tested with Random Forest, Decision Tree, SVM, Extra Trees
- Parameter tuning: perform 5-fold cross validation within training set
 - Pick model parameters with best f-scores

Multiclass Classifier

- Observations from three classes

High confidence:
Definitely red

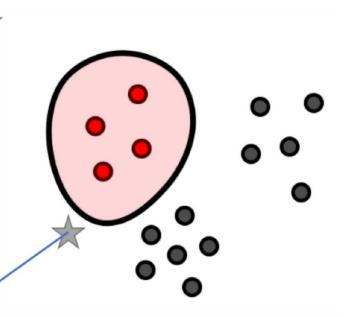
Low confidence:
Red or blue?

One vs Rest Classifier

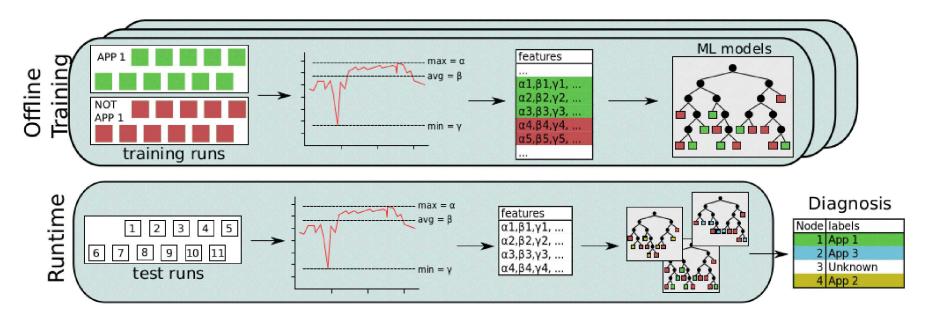
Observations from three classes

Low confidence: Not red

Medium confidence: Probably not red



Taxonomist: Runtime



- At runtime, take prediction confidence from every classifier
 - If confidence is under a threshold, mark as unknown

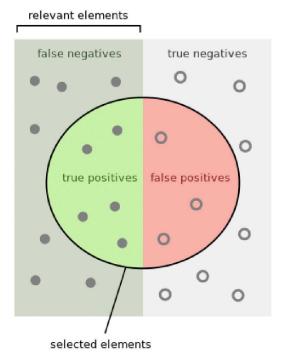
Methodology

- System: Volta Cray XC30m supercomputer at SNL
 - 52 nodes
- LDMS (Lightweight Distributed Metric Service [Agelastos et al., SC'14]
 - 721 metrics per node every second
 - <2 MB RAM usage per node, CPU overhead ~0.01%</p>
- Baseline Method Combs: [Combs et al., E2SC'14]
 - Only input is power consumption already collected
 - More features serial correlation, nonlinearity, trend
 - Random forest classifier, no support for unknown applications

Applications

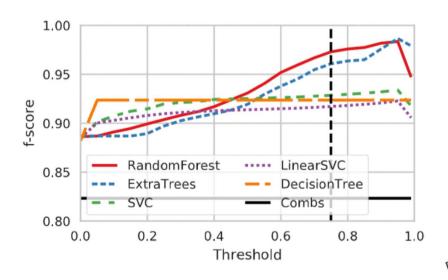
- 3-4 input configurations per application, running on 4-32 nodes
 - BT, CG, FT, LU, MG, SP from NAS Parallel Benchmarks [Bailey et al., j-IJSA'91]
 - miniAMR, miniMD, CoMD, miniGhost from Mantevo [Heroux et al., SNL'09]
 - Kripke from LLNL Proxy Applications [Kunen et al., LLNL'15]
- 6 unwanted applications
 - 5 cryptocurrency miners
 - 1 password cracker

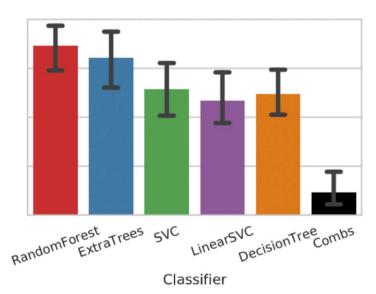
- F-Score
 - Harmonic mean of precision and recall



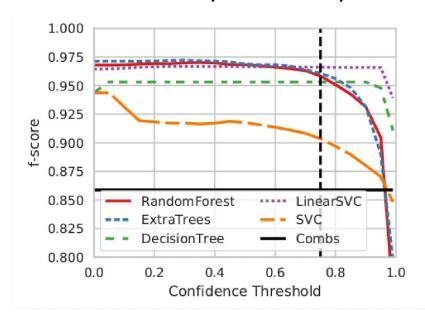
[Walber, Wikimedia, 2014]

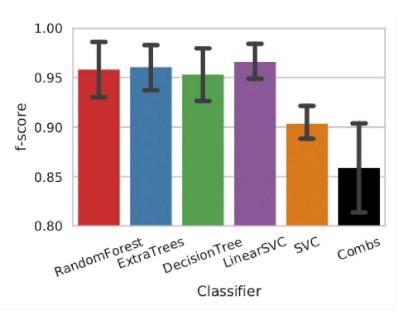
- Train with 10 applications, test with 11
 - Unknown application correctly identified





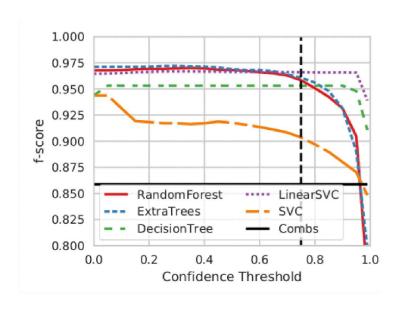
- Train with one input configuration missing
 - Unknown input correctly identified

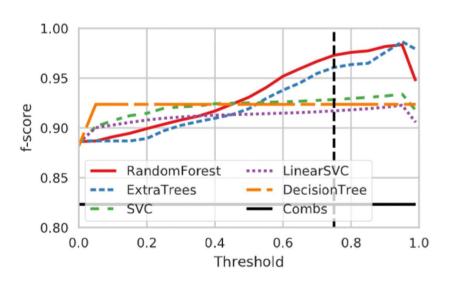




Confidence Threshold Selection

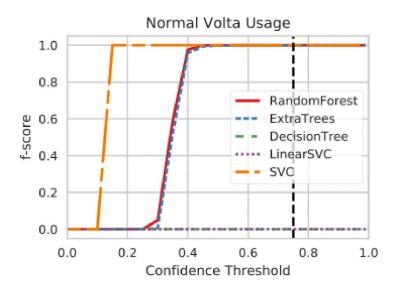
- For training set, perform two tests
 - Remove one application from training, sweep over thresholds
 - Remove one input from training, sweep over thresholds

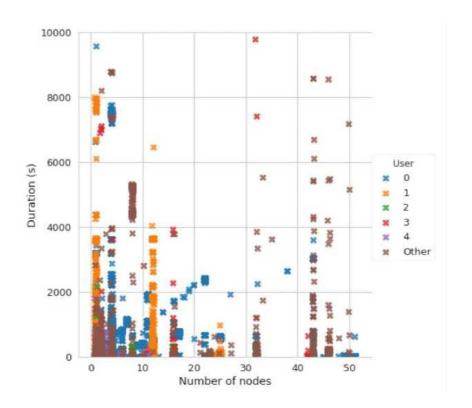




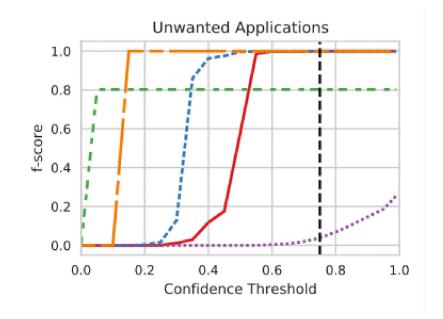
Train with 11 applications

Train with Volta usage over 6 months





- Train with 11 applications
- Test with 5 cryptocurrency miners and password crackers
- Perfect classification



Summary

- A technique to identify applications
 - Based on resource usage data
 - Using concise features, low-overhead
- Our technique outperforms existing methods
 - Over 95% F-score
- Artifact with data, code, more plots: https://doi.org/10.6084/m9.figshare.6384248

