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UQ & Optimization: DOE/DOD Mission Deployment (i) o

Stewardship (NNSAASC) Enerqy (ASCR, EERE,NE) Climate (SciDAC, CSSEF, ACME)

Safety in abnormal environments Wind turbines, nuclear reactors Ice sheets CISM, CESM ISSM CSDMS
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Common theme across these applications:

» High-fidelity simulation models: push forward SOA in computational M&S w/ HPC
- Severe simulation budget constraints (e.g., a handful of runs)
- Significant dimensionality, driven by model complexity (multi-physics, multiscale)




Emphasis on Scalable Methods for High-fidelity UQ on HPC

Compounding effects:

* Mixed aleatory-epistemic uncertainties (segregation - nested iteration)
* Requirement to evaluate probability of rare events (resolve PDF tails for Qol)
* Nonsmooth Qol (exp conv in spectral methods exploits smoothness)

Steward Scalable Algorithms within )>

DAKOTA
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Explore and predict with confi

Core (Forward) UQ Capabilities:
« Sampling methods: MC, LHS, QMC, et al.

dence

* Reliability methods: local (MV, AMV+, FORM, ...),

global (EGRA, GPAIS, POFDarts)

» Stochastic expansion methods: PCE, SC, fn train

Model
Parameters

DAKOTA

Optimization

Uncertainty Quant. |
Parameter Est.
Sensitivity Analysis

Commercial simulation codes
Library mode (semi-intrusive):
ALEGRA (shock physics),
Xyce (circuits), Sage (CFD),

Black box:
Sandia simulation codes

Quantities
of Interest

Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter,
SIERRA (multiphysics)

« Epistemic methods: interval est., Dempster-Shafer evidence
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Research Thrusts for UQ ) et

* Focus: Compute dominant uncertainty effects despite key challenges

« Emphasize scalability and exploitation of special structure ' m
« Adaptivity: p- and h- refinement of stochastic expansions

» Adjoints: gradient enhancement for PCE / SC / GP

...............

» Sparsity: compressed sensing

* Low Rank: tensor / function train (w/ UMich)

» Dimension reduction: active subspaces (w/ CU Boulder),
adapted basis PCE (w/ USC)

« Compound efficiencies
* Multilevel-Multifidelity with sampling & CS/FT surrogates (new: ROM, NN)
* Active subspaces: subspace quadrature, enhance MF control variates

r = Nhi/Nlo = 6

; 10’ & —e— CS multi

» Address complexity w/ component-based approach L. A cssins

« Emulator-based Bayesian inference, Mixed aleatory-epistemic UQ, 2 | T
Optimization under uncertainty (new: Optimal experimental design) |z ©’}
5 10°]

» Position UQ for next generation architectures T TS

Equivalent Number of High-Fidelity Model Evaluations

» Current (imperative): multilevel parallelism (MPI + local async)

* Future (declarative): exploit DAG + AMT for ensemble workflows (w/ Stanford)




“Science Pipeline” Metaphor ) e,

Algorithm Software Production
Research Development Usage
Prototyping Advanced/supervised
(MATLAB, Python, deployments with
lightweight C++ codes) partners/early adopters

K - Feedbacks
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Scalable UQ, DUU ' @ Nozzles, Scramjets
oo | ! FASTMath UQ J Tok k’ ‘ ’
SC S at g okamaks
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Multiple Model Forms in UQ & Opt ) i,

Discrete model choices for simulation of same physics

Potential Flow

A clear hierarchy of fidelity (from low to high)

« Exploit less expensive models to render HF practical
» Muiltifidelity Opt, UQ, inference

» Support general case of discrete model forms
» Discrepancy does not go to 0 under refinement

An ensemble of peer models lacking clear preference
structure / cost separation: e.g., SGS models
« With data: model selection, inadequacy characterizatior
 Criteria: predictivity, discrepancy complexity
» Without (adequate) data: epistemic model
form uncertainty propagation
* Intrusive, nonintrusive
» Within MF context: CV correlation

Potential Flow

Reynolds ‘One- m ‘Revnolds
Averaged Navier- equation equation '
Stokes (RANS) RANS model RANS model
» ke

Hybrid
RANS/LES

Discretization levels / resolution controls
» Exploit special structure: discrepancy = 0
at order of spatial/temporal convergence

Simulation

ANPPL] [PPOJAl Surseddu]

Large Eddy
7 Simulation (LES)

Combinations for multiphysics, multiscale




Simple demonstration of key ML-MF concepts )
Monte Carlo Sampling: MSE for mean estimator

Problem statement: We are interested in the expected value of Qy = G(Xjpr) where

» M is (related to) the number of spatial degrees of freedom

» E Q] EH—OOHE[Q] forsome RVQ: Q2 — R

Monte Carlo:

two sources of error:

» Sampling error: replacing the expected value by a (finite) sample average

» Spatial discretization: finite resolution implies Qy ~ @

Looking at the Mean Square Error:

E (@M% — E[Q)?| = N"'Var (Qu) + (E[Qy — Q))*

Accurate estimation = Large number of samples at high (spatial) resolution




Simple demonstration of key ML-MF concepts i

Multilevel MC: decomposition of estimator variance
Multilevel MC: Sampling from several approximations @y of @ (Multigrid...)

Ingredients:

> {M,:¢=0,..., Lywith My <M; <--- <M., ¥M

» Estimation of E [@7] by means of correction w.r.t. the next lower level

L L
def li 15
Ye = Qu,—Qu,_, —— E(Qu] =E [Qu,]+ D E|Qu, — Qu,_,| = > _E[Y/]
» Multilevel Monte Carlo estimator

G defZ = Y 2( Q)

» The Mean Square Error is

L
E (@ —EQ)?] =Y N, 'Var (¥o) + (E[Qu — Q))°
(=0

Note If @37 — @ (in a mean square sense), then Var (Y,) L3 p




Simple demonstration of key ML-MF concepts i) .
Multilevel MC: optimal resource allocation

Let us consider the numerical cost of the estimator

L
c(@f") => N
£=0

Determining the ideal number of samples per level (i.e. minimum cost at fixed
variance)

j N
C(@") =D N
£=0 Lagrange multiplier 2 - 1/2 Var (Yg)
L 4 > Ng = 5 Z(Var(Yk)Ck) —————
£ E—0 Cg
> "N, 'Var (Y;) = £%/2
- ) \ ' J\ ' J
‘ Y ' Level Level
Balance ML estimator variance independent dependent
(stochastic error) and residual : ;
bias (deterministic error) |
- don’t over-resolve one at Optimal sample profile

the expense of the other

M. Giles, “Multilevel Monte Carlo path simulation,” 2008.



Research & Development in Multifidelity Methods

th

Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy
» address scale and expense for high fidelity M&S applications in defense, energy, and climate
> render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible

A2e wake dynamics

Scra;;'et\h\

SECURE ¢

Emerging mission areas: abnormal thermal, Z-pinch MagLlIF,

quantum chemistry

Monte Carlo UQ Methods

* Production: optimal
resource allocation for
- ltilevelraltifi

* Emerging: active
dimensior 8-E
LDRD), generalized
fmwk for approx
control variates
(ASC V&V Methods)

* On the horizon: control
of time avg; learning
latent var relationships
(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)
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Surrogate UQ Methods (PCE, SC)

* Production (v6.10):

] ML PCE w/ projection &

5 i regression; ML SC w/ 1
nodal/hierarchical interp; "

greedy ML adaptation
144 (DARPA SEQUOIA)

* Emerging: multi-index
stochastic collocation, -
multilevel function train
(ASC V&V Methods)

» On the horizon: new
surrogates (ROM, deep
NN) with error mgmt
(‘19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

Optimization Under Uncertainty

Production: manage simulation
and/or stochastic fidelity

Emerging:
Derivative-based methods (DARPA SEQUOIA)
+ Multigrid optimization (MG/Opt)
* Recursive trust-region model mgmt.:
extend TRMM to deep hierarchies
Derivative-free methods (DARPA ScramjetUQ)
+ SNOWPAC (w/ MIT, TUM) w/
MLMC error estimates

On the horizon: Gaussian process-based
approaches: multifidelity EGO (FASTMath OUU);
Optimal experimental design (OED) (A2e)

Key Challenge: existing ML/MF/MI performance is compelling on (elliptic) model problems, but
significant generalization required for engineering applications with non-trivial model relationships
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DARPA EQUIPS (Scramjet UQ): =
LES Models for Turbulent Reacting Flow in HIFIRE abortores

Multiscale-multiphysics application of « Provided benchmark LES calculations of the
Large Eddy Simulation (LES) Hypersonic International Flight Research Experiment
(HIFiRE) to support development of UQ

« (Case of interest corresponds to the geometry and
conditions of ground based experiments performed
in the HIFIRE Direct Connect Rig (HDCR)

A hierarchy of unit cases (including high-fidelity LES
of the HDCR) has facilitated UQ tasks and provided
optimal workflow between team members

« Unit cases are designed to emulate key Qols while
making comprehensive parametric studies possible

State of
the Art LES
("P2" Case)

\
\\ Model forms:

Discretizations:




Initial Deployment of MLCV MC for Scramjet UQ th ?t}ldratl

Context: 3D LES simulation of scramjets is extremely expensive and a significant
challenge for UQ; even more so for OUU.

Goal: Demonstrate UQ in moderately high D using only a “handful” of HF simulations,
by leveraging lower fidelity 2D models and coarsened 2D/3D discretizations

UQ Approach: MLCV algorithm described previously.

1

‘MC —+— ]
MLMC ——— | 2D 3D
WLME === d/8 | 564 011
d/16 | 0014 1

TABLE: Computational cost.

elgg
o
T

2D 3D
d/8 | 4,191 263
d/16 68 9

Optimal sample allocations based on relative
cost, observed correlation between models,

i observed variance distribution across levels,
10 100 1000 10000 100000 1e+06 and MSE target (.045 of pilot MSE)
Equivalent HF runs

Optimized allocation: achieve MSE target for 3D LES in 24D using only 9 HF sims. (50 equiv HF)



Updated Deployment of MLCV MC for Scramjet UQ 4L

P1 updated: re-formulate inputs in order to obtain an higher level of turbulence and,

in turn, a more non-linear response of the system

Sandia
National _
Laboratories

Observations from pilot sample: decay in variance across discretizations (LF d/8 and

Table 2: Variance for the five Qols of the P1 unit problem.

discrepancy d/16 — d/8) no longer observed for all Qol

P 0,mean P 0.rms,mean Mmean TKEmearz Xmean
P1
d/8 || 4.02554e-03 | 1.90524e-06 | 1.99236e-02 | 3.34905e-07 | 4.24520e-03
d/16 || 4.03350e-07 | 7.77838e-08 | 6.68974e-05 | 1.74847e-08 | 4.40048e-05
P1 updated
d/8 || 4.05795e-03 | 1.90612e-06 | 1.60029¢e-02
d/16 || 2.85017¢-04 | 7.36978e-07 | 2.07638¢-03 _

Implications: requires more focused analysis of deterministic convergence properties -

Need to engage additional refinement levels (i.e., d/32, d/64) in order to converge Qol

statistics that are closely tied to resolution of turbulence.



Multilevel — Multifidelity Sampling Methods rh)

Research Direction: Generalized framework for approx. control variates

» Unification of ML and CV approaches 4 ——
* Look beyond (recursive) model pairings e oo
N -2 ACV-MF
. . g ] (K,L) = (1,1)
7 =Q+Za¢ (Qz’—m) E (K,L) = (2,1)
P g (K,L)=(3,1) |
C e RMM  iariance matrix among (Q); -’z )= (41)
arg min Var {QCV (g)] |:> ¢ € RM vector of covariances between Q . % 103 — ’ X
o a* — C—lc e )
N :;3 104{ocvs 0N, ]
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A. Gorodetsky, G. Geraci, E., J. Jakeman “A Generalized Framework for Approximate Control Variates,” arxiv.org/abs/1811.04988



Multilevel — Multifidelity Sampling Methods i) ieor

Laboratories
Research Direction: Generalized framework for approx. control variates

» Unification of ML and CV approaches
» Look beyond (recursive) model pairings

QCV =Q+§:ai (Qi—yi)
i=1

C e RMM  iariance matrix among Q;

oy et Vi {QCV (g)] |:> c € RM vector of covariances between Q and each Q;
a

a* = Cle
f , MLMC B - THH—e— MFMC 1
1094 MC -- —%— Opt-MLMC - 104 e L —e— MLMC .
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A. Gorodetsky, G. Geraci, E., J. Jakeman “A Generalized Framework for Approximate Control Variates,” arxiv.org/abs/1811.04988



Research & Development in Multifidelity Methods

Sandia
National _
Laboratories

0L

Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy
» address scale and expense for high fidelity M&S applications in defense, energy, and climate
» render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible
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AZ2e wake dynamics

SECURE ¢

Emerging mission areas: abnormal thermal, Z-pinch MagLlIF,

quantum chemistry

Monte Carlo UQ Methods

* Production: optimal
resource allocation for
multilevel, multifidelity,
combined (DARPA
SEQUOIA/ScramjetUQ)

* Emerging: active

dimensions (18 EE | -

LDRD), generalized
fmwk for approx
control variates
(ASC V&V Methods)

* On the horizon: control
of time avg; learning
latent var relationships
(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)

s et
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Estimator Variance (normalized

100

Lt — Emerging: multi-index
e tochastic collocation . -
e multilevelfunction train =
o - (@
3 wo
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Surrogate UQ Methods (PCE, SC)

* Production (v6.10): i
ML PCE w/ projection &
regression; ML SC w/
nodal/hierarchical interp;
greedy ML adaptation

DARPA SEQUOIA "o

=1l

(ASC V&V Methods)

Il

* On the horizon: new
surrogates (ROM, deep
NN) with error mgmt
(19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

Optimization Under Uncertainty

Production: manage simulation
and/or stochastic fidelity

Emerging:
Derivative-based methods (DARPA SEQUOIA)
« Multigrid optimization (MG/Opt)
* Recursive trust-region model mgmt.:
extend TRMM to deep hierarchies
Derivative-free methods (DARPA ScramjetUQ)
+« SNOWPAC (w/ MIT, TUM) w/
MLMC error estimates

On the horizon: Gaussian process-based
approaches: multifidelity EGO (FASTMath OUU)




. . Sandia
Surrogate approaches: Greedy multilevel refinement (Y e,

‘QL ~ Qo+ Y AL for Ay = 01— 01

Compete refinement candidates across model levels: max induced change / cost
* 1 or more refinement candidates per model level

* Measure impact on final Qol statistics (roll up multilevel estimates)
* norm of change in response covariance (default)
* norm of change in level mappings (goal-oriented: z/p/f/3*)
normalized by relative cost of level increment (# new points * cost / point)

« Greedy selection of best candidate, which then generates new candidates for this model level

Level candidate generators:

* Uniform refinement: 1 exp order / grid level candidate per model level e
« Tensor / sparse grids: projection PCE, nodal/hierarchical SC B
* Regression PCE: least squares / compressed sensing

* Anisofropic refinement: 1 exp order / grid level candidate per model level

— N W = Ut

« Tensor / sparse grids LR R

* Index-set refinement: many candidates per level ! . | [
* Generalized sparse grids: projection PCE, nodal/hierarch SC |
* Regression PCE

* Adapted candidate basis: ~3 frontier advancements per model level e

* Regression PCE (Jakeman, E., Sargsyan, “Enhancing £1-minimization estimates of
polynomial chaos expansions using basis selection,” J. Comp. Phys., Vol. 289, May 2015.)
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Multilevel / Multi-index PCE: greedy competition across models

Greedy ML PCE:
Greedy ML PCE: uniform CS uniform / generalized SG Greedy multi-index PCE

-2

10

I single level 10° ) ) - —
3 Al rGe O3 ey <10 S L
=MLPCE CS 5 level =1 10 | . <O~ Greedy ML PCE Uniform SG 5 level |} % o
\ ~MLPCECS5levelk =15 - 0O~ Greedy ML PCE GSG 5 level . " e
10} . +4>~MLPCECSS5levelk=2 || . .
<] ~MLPCE CS 5 levelx = 3 16 b 1024 . :
+ 40 = Greedy ML PCE CS 5 level P e 2
& '\,_ L
107° 2 L
8 107} 5 A W &
T 10, '\ 3
: : - - ([3]02)
8 3 10° - == ([0, 1, 2, 3][0, 1, 2]) - -
210’} 2 == (412D
1o 10-4] === (0.1.2.3.40.1,2)
e ([52) H
100l 3 107 —e— ([0, 1,23, 4,50, 1,2) @ '
& 103 107! 10! 10°
1077¢ Work
o 1(I)‘ 12)2 1£)5 10 10710‘ 1;)2 1[-]3 1;)" 1£)5 10° o
Equivalent HF Simulations Equivalent HF Simulations
o
[ComvTol | N, | Ny| Ns| Ny| Ns] '
Conv Tol ‘ Ny ‘ Ny ‘ Ny ‘ Ny ‘ Ny ‘ l.e-2 43 28] 19 197 19)4 = = _@
led| 211| 83| 19/ 19| 19/2 |
Le-1 | 198 91 9, 9 9 Le6| 391| 271 | 156| 19| 197 : e
1.2 644 198 9 9 9 1l.e-8 | 1359 743 | 327 59 19 3 - - i, -
l.e-10 | 3535 | 2311 | 1039 | 391 19 - » 357
kel B e &) &) B Le-12 10310 | 5783 | 2783 | 1343 | 43| i MMlm HHe Hew ) 5 = Ui Q.-
le-4 | 4505 | 1802 | 50 | 9| 9 le-14 | 26655 | 14991 | 8063 | 3703 | 1535 el hplas s i | ) "
(o, )
104 7 2




1 | Advanced UQ Methods in Dakota (ASC V&V Methods) — Mike Eldred

Background
+ Emphasis on UQ with high-fidelity simulation models:
SOA in computational M&S w/ HPC
- Severe simulation budget constraints (e.g., handful of HF runs)
- Significant dimensionality, driven by model complexity
- Can make fwd propagation / inference / OUU / OED untenable

* Multiple model fidelities / discretizations are often available that
trade accuracy for cost
* In CFD for example, common model
fidelities include potential flow, inviscid

Approach, Metrics, and Outcomes

Exploit special problem structure when available

Leverage all available information sources

Scalable architecture for ensemble computing

Coordination/Communication

« Dakota team in 1463, 8754, 1424, 1544, et al.

« Many academic collaborations: Stanford, MIT, UMich, USC,
UT Austin, CU Boulder, Duke, et al.

+ Lab collaborations: LANL-ESA, LLNL A (UQ Pipeline), ORNL

Euler, RANS, and LES / DNS, each
potentially supporting multiple spatio-
temporal resolutions

Impact

J Defense / Energy / Climate

* Assumptions & limitations:

+ Avoid simplifying assumptions >
generalized frameworks, UQ risk mitigations
« Sampling: robust, noise-tolerant
« Surrogate: exploit special structure

» Healthy research to production pipeline
+ Mission applications across DOE/NNSA, DOE/SC, DOD

Recent / current MLMF deployments:

A2e wake dynamics
Sﬂfa"\vr}&‘f..

| Emerging mission areas: abnormal thermal, Z-pinch MagLIF, quantum chemistry |
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Monte Carlo UQ Methods

* Production: optimal

resource ion for

multilevel, multifidelity,

combined (DARPA

* Emerging: active

dimensions (‘18 EE

3
SEQUOIA/ScramjetUQ) g

Strategic Vision

vvvvv

Polynomial Chaos UQ Methods

* Production (v6.10): & Fiis
ML PCE wi projection & ‘u B

regression; ML SC w/ N o

interp; |
greedy ML adaptation
(DARPA SEQUOIA)

« Emerging:

iti-inde

LDRD), g
fmwk for approx
control variates
(ASC V&V Methods)

* On the horizon: control

of time avg; learning

latent var relationships

(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)

i

Informs

* On the horizon: new

(ASC V&V Methods)

surrogates (ROM, deep
NN) with error mgmt
(19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

Informs

SNL Carrent

Optimization Under Uncertainty

* Production: manage simulation "t

and/or stochastic fidelity 3
Robust
Derivative-based methods (DARPA SEQUOIA)
* Multigrid optimization (MG/Opt)
* Recursive trust-region model mgmt.:
extend TRMM to deep hierarchies
Derivative-free methods (DARPA ScramjetuQ)
* SNOWPAC (w/ MIT, TUM) w/
MLMC error estimates

+ On the horizon: Gaussian process-based

approaches: multifidelity EGO (FASTMath OUU)
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High-Level Vision for Next Generation Architecture
Dakota-MPI, Dakota-X, Py-Dakota, ...

Input Stand-alone GUI
file

editors

Front ends
(Research to Production)

Sandia Analysis Workbench

| It rator |

1
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T
Algorithm Core
—

(Iterators, Models, ... ces
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Level 1 12 Level 3 m
MPI_COMM_WORLD optcome3 evalcomm3 Applications
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An Initial Capability Roadmap

At least two dimensions of evolving capability / complexity

S
Integrated library batch services X SU-2020+?
SU-PSAAP2
Black box batch evaluator X X SNL-
SNL-ASC2018/2019 SNL-FMUQ ASC2020+?
Scheduling of indiv black box X 9
SNL-Current ’
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