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UQ & Optimization: DOE/DOD Mission Deployment
Sandia
National
Laboratories

Stewardship (NNSAASC) Energy (ASCR, EERE, NE) Climate (SciDAC, CSSEF, ACME)
Safety in abnormal environments Wind turbines, nuclear reactors

Addtnl. Office of Science: 
(SciDAC, EFRC) 

Comp. Matls: waste forms /
hazardous matls (WastePD, CHWM)
MHD: Tokamak disruption (TDS)
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Common theme across these applications:

• High-fidelity simulation models: push forward SOA in computational M&S w/ HPC
4 Severe simulation budget constraints (e.g., a handful of runs)
4 Significant dimensionality, driven by model complexity (multi-physics, multiscale)



Emphasis on Scalable Methods for High-fidelity UQ on HPC

Compounding effects:
• Mixed aleatory-epistemic uncertainties (segregation nested iteration)

• Requirement to evaluate probability of rare events (resolve PDF tails for Qol)

• Nonsmooth Qol (exp conv in spectral methods exploits smoothness)

Steward Scalable Algorithms within

Core (Forward) UQ Capabilities:

DAKOTA
Explore and predict with confidence

• Sampling methods: MC, LHS, QMC, et aI.

• Reliability methods: local (MV, AMV+, FORM, ...),
global (EGRA, GPAIS, POFDarts)

• Stochastic expansion methods: PCE, SC, fn train

• Epistemic methods: interval est., Dempster-Shafer evidence
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Library rnode (semi-intrusive):
ALEGRA (shock physics),
Xyce (circuits), Sage (CFD),
Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter,
SIERRA (multiphysics) 

00
R = E aplij

i=o

NP

Erj.L.AC
j=1

0.06

0.05

0.04

0.03

0.02

0 01

0

10°

10'
06 0.8 1.0 12 1.4 13 13 20 22

1 1

ig
Failureeiostn

7



Research Thrusts for UQ

• Focus: Compute dominant uncertainty effects despite key challenges

• Emphasize scalability and exploitation of special structure

• Adaptivity: p- and h- refinement of stochastic expansions

• Adjoints: gradient enhancement for PCE / SC / GP

• Sparsity: compressed sensing

• Low Rank: tensor / function train (w/ UMich)

• Dimension reduction: active subspaces (w/ CU Boulder),
adapted basis PCE (w/ USC)

Sande
Mond
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• Compound efficiencies

• Multilevel-Multifidelity with sampling & CS/FT surrogates (new: ROM, NN

• Active subspaces: subspace quadrature, enhance MF control variates

• Address complexity w/ component-based approach

• Emulator-based Bayesian inference, Mixed aleatory-epistemic UQ,
Optimization under uncertainty (new: Optimal experimental design)

• Position UQ for next generation architectures

• Current (imperative): multilevel parallelism (MPI + local async)

• Future (declarative): exploit DAG + AMT for ensemble workflows (w/ Stanford)
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Multiple Model Forms in UQ & Opt
Discrete model choices for simulation of same physics

A clear hierarchy of fidelity (from low to high)
• Exploit less expensive models to render HF practical

• Multifidelity Opt, UQ, inference
• Support general case of  discrete model forms

• Discrepancy does not go to 0 under refinement

An ensemble of peer models lacking clear preference
structure / cost separation: e.g., SGS models
• With data: model selection, inadequacy characterizatior

• Criteria: predictivity, discrepancy complexity
• Without (adequate) data: epistemic model

form uncertainty propagation
• Intrusive, nonintrusive

• Within MF context: CV correlation

Discretization levels / resolution controls
• Exploit special structure: discrepancy 4 0

at order of spatial/temporal convergence

Combinations for multiphysics, multiscale

Sandia
National
Laboratories
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Simple demonstration of key ML-MF concepts
Monte Carlo Sampling: MSE for mean estimator
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Problem statement: We are interested in the expected value of Qm = g(Xm) where

■ M is (related to) the number of spatial degrees of freedom

■ E [Qm] M---*cc> [Q] for some RV Q: Q R

Monte Carlo:

(WC clef

M 'N - KT

two sources of error:

■ Sampling error: replacing the expected value by a (finite) sample average

■ Spatial discretization: finite resolution implies QM

Looking at the Mean Square Error:

E [(e47N E [Q])2] = N-1Var (QM) + [Qm — Q])2

Accurate estimation Large number of samples at high (spatial) resolution



Simple demonstration of key ML-MF concepts
Multilevel MC: decomposition of estimator variance

Multilevel MC: Sampling from several approximations Qm of Q (Multigrid. )

ingredients:

■ {_Alf : f = 0, . . . ,L} with Mo
< < < m-L def m

■ Estimation of IE [Qm] by means of correction w.r.t. the next lower level

def linearity
1 ---+ 7,fQm] = E [Qm-0]+>:E [QiviR Chh_i IE [Ye]

t=i e=o

D.- Multilevel Monte Carlo estimator

emi, clef E MC
t,N

t=0

■ The Mean Square Error is

[Q112] =
=0

n(i)
'u4 — 1 )

/V1Var (Ye) ( [Qm QD2

Note If Qm Q (in a mean square sense), then Var (Ye) 
00

0
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Simple demonstration of key ML-MF concepts
Multilevel MC: optimal resource allocation

Let us consider the numerical cost of the estimator

Determining the ideal number of samples per level (i.e. minimum cost at fixed
variance)

CCOYIL)=1 .eCt
f=0

L

Lagrange multiplier

L.Arf-lVar (Ye) = e2/2
E=0

V
Balance ML estimator variance
(stochastic error) and residual

bias (deterministic error)
4 don't over-resolve one at
the expense of the other

Sandia
Mad
laboratories

2
V =

E2
(Var ck )1/21 var (Ye) 

Level Level
independent dependent

f

Optimal sample profile

M. Giles, "Multilevel Monte Carlo path simulation," 2008.



Research & Development in Multifidelity Methods
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Laboratories

Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy
>• address scale and expense for high fidelity M&S applications in defense, energy, and climate
>. render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible

A2e wake dynamics

Emerging mission areas: abnormal thermal, Z-pinch MagLIF, quantum chemistry

Monte Carlo UQ Methods

• Production: optimal
resource allocation for

lity,
combined (DARPA
SEQUOIA/ScramjetUQ

• Emerging: active
d •

LDRD), generalized
fmwk for approx
control variates
(ASC V&V Methods)

• On the horizon: control
of time avg; learning
latent var relationships
(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)

Surrogate UQ Methods (PCE, SC)

• Production (v6.10):
ML PCE w/ projection &
regression; ML SC w/
nodal/hierarchical interp;
greedy ML adaptation
(DARPA SEQUOIA)

• Emerging: multi-index
stochastic collocation,
multilevel function train
(ASC V&V Methods)

• On the horizon: new
surrogates (ROM, deep
NN) with error mgmt
('19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

10,

SECURE Gc

Optimization Under Uncertainty

• Production: manage simulation
and/or stochastic fidelity

• Emerging:
Derivative-based methods (DARPA SEQUOIA)
• Multigrid optimization (MG/Opt)
• Recursive trust-region model mgmt.:

extend TRMM to deep hierarchies
Derivative-free methods (DARPA ScramjetUQ)
• SNOWPAC (w/ MIT, TUM) w/

MLMC error estimates

Robust _A

• On the horizon: Gaussian process-based
approaches: multifidelity EGO (FASTMath OUU);
Optimal experimental design (OED) (A2e)

Key Challenge.- existing ML/MF/MI performance is compelling on (elliptic) model problems, but
significant generalization required for engineering applications with non-trivial model relationships



DARPA EQUiPS (Scramjet UQ):
LES Models for Turbulent Reacting Flow in HIFiRE

Multiscale-multiphysics application of
Large Eddy Simulation (LES)

1111 i111.:k11HDCR
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151
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Model forms:
• 2D, 3D

Discretizations:
• d/{8,16,32,64}

• Provided benchmark LES calculations of the
Hypersonic International Flight Research Experiment
(HIFiRE) to support development of UQ

• Case of interest corresponds to the geometry and
conditions of ground based expenments performed
in the HIFiRE Direct Connect Rig (HDCR)

• A hierarchy of unit cases (including high-fidelity LES
of the HDCR) has facilitated UQ tasks and provided
optimal workflow between team members

• Unit cases are designed to emulate key QoIs while
making comprehensive parametric studies possible
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Initial Deployment of MLCV MC for Scramjet UQ

Context: 3D LES simulation of scramjets is extremely expensive and a significant
challenge for UQ; even more so for OUU.

Goal: Demonstrate UQ in moderately high D using only a "handful" of HF simulations,
by leveraging lower fidelity 2D models and coarsened 2D/3D discretizations

UQ Approach: MLCV algorithm described previously.

1

cp
0.1

0.01

........ ...... ....... .....

• • ,
MC

MLMC
MLMF

•

10 100 1000 10000

Equivalent HF runs

100000 le+06

2D 3D
d/8 5E-4 0.11
d/16 0.014 1

TABLE: Computational cost.

2D 3D
d/8 4,191 263
d/16 68 9
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Optimal sample allocations based on relative

cost, observed correlation between models,

observed variance distribution across levels,

and MSE target (.045 of pilot MSE)

Optimized allocation: achieve MSE target for 3D LES in 24D using only 9 HF sims. (50 equiv HF)



Updated Deployment of MLCV MC for Scramjet UQ

P1 updated: re-formulate inputs in order to obtain an higher level of turbulence and,
in turn, a more non-linear response of the system

PO,meari PO,rmsdnean Mmean TKEm„, Xmean
P1

d78
d716

4.02554e-03
4.03350e-07

1.90524e-06
7.77838e-08

1.99236e-02
6.68974e-05

3.34905e-07
1.74847e-08

4.24520e-03
4.40048e-05

P1 updated
d78
(0.6

4.05795e-03
2.85017e-04

1.90612e-06
7.36978e-07

1.60029e-02 7.53353e-07 9.-1-1403e-04
2.07638e-03 2.99744e-07 2.57399e-02

Table 1 Variance for the five QoIs of the P1 unit problem.
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Observations from pilot sample: decay in variance across discretizations (LF d/8 and
discrepancy d/16 — d/8) no longer observed for all Qol

lmplications: requires more focused analysis of deterministic convergence properties 4
Need to engage additional refinement levels (i.e., d/32, d/64) in order to converge Qol
statistics that are closely tied to resolution of turbulence.



Multilevel Multifidelity Sampling Methods
Research Direction: Generalized framework for approx. control variates

• Unification of ML and CV approaches
• Look beyond (recursive) model pairings 100

t• s, 10-1
(rv = + - pi)

t• 3 10-2
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A. Gorodetsky, G. Geraci, E., J. Jakeman "A Generalized Framework for Approximate Control Variates," arxiv.org/abs/1811.04988



Multilevel Multifidelity Sampling Methods
Research Direction: Generalized framework for approx. control variates

• Unification of ML and CV approaches
• Look beyond (recursive) model pairings

(rv @i
i=i

C Raii'm covariance matrix among Qi

arg min Var POcv (Ltd 1—> c c au vector of covariances between Q and each Qi
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Research & Development in Multifidelity Methods
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Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy
>• address scale and expense for high fidelity M&S applications in defense, energy, and climate
>. render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible

Emerging mission areas: abnormal thermal, Z-pinch MagLIF, quantum chemistry

Monte Carlo UQ Methods

• Production: optimal
resource allocation for
multilevel, multifidelity,
combined (DARPA
SEQUOIA/ScramjetUQ)

• Emerging: active
dimensions ('18 EE
LDRD), generalized
fmwk for approx
control variates
(ASC V&V Methods)

• On the horizon: control
of time avg; learning
latent var relationships
(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)

Surrogate UQ Methods (PCE, SC)

• Production (v6.10):
ML PCE w/ projection &
regression; ML SC w/
nodal/hierarchical interp;
greedy ML adaptation
ARPA SEQUOIA

Emerging: multi-index
tochastic collocatio
multileve unction train
(ASC V&V Methods)

• On the horizon: new
surrogates (ROM, deep
NN) with error mgmt
('19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

xr•

io-4

lef

IPLPO

SECURE Gc

Optimization Under Uncertainty

• Production: manage simulation
and/or stochastic fidelity

• Emerging:
Derivative-based methods (DARPA SEQUOIA)
• Multigrid optimization (MG/Opt)
• Recursive trust-region model mgmt.:

extend TRMM to deep hierarchies
Derivative-free methods (DARPA ScramjetUQ)
• SNOWPAC (w/ MIT, TUM) w/

MLMC error estimates

Robust

• On the horizon: Gaussian process-based
approaches: multifidelity EGO (FASTMath OUU)



Surrogate approaches: Greedy multilevel refinement

OL. ̂  00 - for Ai = (.21— Q1-I
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Compete refinement candidates across model levels: max induced change / cost
• 1 or more refinement candidates per model level
• Measure impact on final Qol statistics (roll up multilevel estimates)

• norm of change in response covariance (default)
• norm of change in level mappings (goal-oriented: z/p/p/p*)

normalized by relative cost of level increment (# new points * cost / point)

• Greedy selection of best candidate, which then generates new candidates for this model level

Level candidate generators: 
• Uniform refinement: 1 exp order / grid level candidate per model level

• Tensor / sparse grids: projection PCE, nodal/hierarchical SC
• Regression PCE: least squares / compressed sensing

• Anisotropic refinement: 1 exp order / grid level candidate per model level
• Tensor / sparse grids

• Index-set refinement: many candidates per level
• Generalized sparse grids: projection PCE, nodal/hierarch SC
• Regression PCE

• Adapted candidate basis: -3 frontier advancements per model level
• Regression PCE (Jakeman, E., Sargsyan, "Enhancing t1-minimization estimates of

polynomial chaos expansions using basis selection," J. Comp. Phys., Vol. 289, May 2015.)
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Multilevel / Multi-index PCE: greedy competition across models

Greedy ML PCE: uniform CS
10

10

10 5

10

-e- PCE CS single level
• .6.- MF PCE CS 2 level p = 10

• V- ML PCE CS 5 level K = 1

• -A- ML PCE CS 5 level c= 1.5
• ML PCE CS 5 level = 2

• -4 - M L PCE CS 5 level x = 3
• -0- Greedy ML PCE CS 5 level

A

10' 10'
Equivalent HF Simulations

Conv Tol N1 N2 N3 N4 N5

1.e-1 198 9 9 9 9

1.e-2 644 198 9 9 9

1.e-3 1802 644 9 9 9

1.e-4 4505 1802 50 9 9

10

10 5

1 de

10 11

10-12
101 10'

Equivalent HF Simulations

Greedy ML PCE:
uniform / generalized SG

- PCE Uniform SG single level
- PCE GSG single level

• -0- Greedy ML PCE Uniform SG 5 level
• -0- Greedy ML PCE GSG 5 level

105

Conv Tol N1 N2 N3 N4 N5

te-2 43 23 19 19 19
Le-4 211 83 19 19 19
1.e-6 391 271 156 19 19
1.e-8 1359 743 327 59 19

1.e-10 3535 2311 1039 391 19
1.e-12 10319 5783 2783 1343 43
1.e-14 26655 14991 8063 3703 1535

1

to°

Greedy multi-index PCE

Sandia
National
Laboratories

I 10-3 
••II. •

•

••• •

• •

1

U31.121)
([0. 1, 2, 3],[0, 1, 2])

([4],[2])

([0, 1, 2, 3, 4],[0, 1, 2])

([5].121)
([0, 1, 2, 3, 4, 5],[0, 1, 2]) 2

10-1
Work

L., I. L. ,
ONS.C1MONS.

104

102

100

10°

161

2
10361

045

307

135

39

773

269

111

19

345

127

O`OseNS'Ose•-.M.,7%;‘,,7";`,-Nv-s,vm,;,̀3•NThi'v'

(a, al)



1
9

1 Advanced UQ Methods in Dakota (ASC V&V Methods) — Milce Eldred

Background
• Emphasis on UQ with high-fidelity simulation models:
SOA in computational M&S w/ HPC
4 Severe simulation budget constraints (e.g., handful of HF runs)
4 Significant dimensionality, driven by model complexity
4 Can make fwd propagation / inference / OUU / OED untenable

• Multiple model fidelities / discretizations are often available that
trade accuracy for cost

• In CFD for example, common model
fidelities include potential flow, inviscid
Euler, RANS, and LES / DNS, each
potentially supporting multiple spatio-
temporal resolutions

Impact

Approach, Metrics, and Outcomes
• Exploit special problem structure when available
• Leverage all available information sources
• Scalable architecture for ensemble computing

• Coordination/Communication
• Dakota team in 1463, 8754, 1424, 1544, et al.
• Many academic collaborations: Stanford, MIT, UMich, USC,

UT Austin, CU Boulder, Duke, et al.
• Lab collaborations: LANL-ESA, LLNL A (UQ Pipeline), ORNL

Defense / Energy / Climate

DOE/NNSA, DOE/SC, DOD

• Healthy research to production pipeline
• Mission applications across DOE/NNSA, DOE/SC, DOD

Recent / current MLMF deployments:

11\•_

UCAV

Nozzle Scramjet

Emerging mission areas: abnormal thermal, Z-pinch MagLIF, quantum chemistry

• Assumptions & limitations:
• Avoid simplifying assumptions 4

generalized frameworks, UQ risk mitigations
• Sampling: robust, noise-tolerant
• Surrogate: exploit special structure

Strategic Vision
Standalen.0.11

LA —1tZL.. 1111111

PN
MMEN

interated lihrao hatch smker

Monte Carlo UQ Methods Polynomial Chaos UQ Methods Optimization Under Uncertainty

Production: optimal
resource allocation for
multilevel, multifidelity,
cornbined (DARPA
SEQUOINScramjetUQ) •

Enlarging: active
dimensions ('18 EE
LDRD), generalized
fmwk for approx
control variates
(ASC \MN Methods)

On the horizon: control
of time avg; learning
latent var relationships
(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)

Informs

• Production (c6.10):
ML PCE projection t
regression; ML SC w/
nodal/hierarchical interp, ! ~
greedy ML adaptation
(DARPA SEQUOIA)  •

• Emerging: multi-index
stochastic collocation
(ASC V&V Methods)

• On the horizon: new ,.
surrogates (ROM, deep
NN) with error mgmt
(19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

• Production: manage simulation
and/or stochastic fidelity

• Emerging:
Derivative-based methods (DARPA SEQUOIA)
• Multigrid optimization (MG/Opt)
• Recursive trust-region model mgmt.,

extend TRMM to deep hierarchies
Derivative-free methods (DARPA SoamjetUQ)
• SNOWPAC (w/ MIT, TUM) w/

MLMC error estimates

Robust

• On the horizon: Gaussian process-based
approaches: multilidelity EGO (FASTMeth OUU)

1
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Front ends
(Research to Production

Algorithm Core
(lterators, Models, ...)

High-Level Vision for Next Generation Architecture
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An Initial Capability Roadmap
At least two dimensions of evolving capability / complexity

Integrated library batch services

Black box batch evaluator

Scheduling of indiv black box
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