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@ A Digital Engineering Strateg
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“Digital engineering has

empowered a paradigm shift from
the traditional design-build-test
methodology to a model-analyze-
build methodology.”

— DoD Digital Engineering Strategy, June
2018
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@ A Data-Centric FoundationiilENEBISHRENSIORt GRS

Re-think the surveillance
program for the 215t century

Increased production
throughput

Reduce the design
cycle time

DATA
DATA STREAM DATA
STREAM STREAM

Risk-, physics-, and age-aware

Agile, model-based design Credible mod/sim results surveillance by design
workflow
Maintain International Synthesis of experimental and
Rapid cycles of learning HPC/HPDA leadership mod/sim results for critical

decision making

National ASC Advanced Machine Learning (AML) Focus Areas

Improved efficiency in design process Data-driven physics models Enhanced experimental design
Anticipatory stockpile decision making Reduced computational cost

Physics-constrained ML Employ ML with sparse data Invest in credible ML
Learning HPC hardware systems Improve data specifications Build talent at our labs



@ ML Enables Automatic HiSSHIGENSIAONI—

. Steve Owens

* Problem

- Geometry preparation and meshing for computational simulation is bottleneck
(consuming 70%+ of analyst time)

> Analyst/engineer must have extensive domain-specific expertise to manage many
individual complex problems and tasks

> Must produce verifiably accurate physics appropriate mesh ready for simulation

- Technical Approach
Identify tasks currently done by analysts to train machine learning models
Capture and label operations performed by expert using existing software

Build a feature library of geometric characteristics commonly encountered in CAD
models and identify solutions for effectively modifying CAD for best resulting mesh

Explore machine learning models that provide best solutions for CAD features with
associated solution labels
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* Results/Accomplishments

> Developed ML techniques to rank geometry-modification operations by their
likelihood of yielding a meshable model

> Provides insight on which geometric features are most useful for machine leaning,
and would be relatively easy to integrate into the analyst workflow if successful

Main Focus Areas: Improved Agile model-based design A A
efficiency in design process and workflow and Rapid cycles el s Balg

: ) cycle time
Reduced computational cost of learning
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('E Deep Learning Enabled BiSCONCRYNOIINORISIICSINY

Emily Donahue

* Problem

o |t is difficult to train ML networks Training the GAN 1 Identifying anomalies
to identify rare/never-before- — , ! |
seen features with high - e
confidence — - e

Technical Approach "Proprocessing | Lo data Lngoon dots ’ Soemaies

5 Train a neural netWO rk (Wlth Schlegl et. al. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery. 2017

3000 images) to understand Real query image Anomaly detection

only “good” features - r “
* Results/Accomplishments bl
> Deep learning model finds ~
anomalies in seconds that would | | o
take a human hours to find | e
- Enables automated anomaly
detection in production and L |

surveillance X-Ray CT scan of faulty electronic component
z . ) ) ) Increased production
Main Focus Areas: Anticipatory Risk-aware surveillance and Synthesis thmuzhput
stockpile decision making and of experimental and mod/sim results Re-think the surveillance

Enhanced experimental design for critical decision making program for the 215t century




ML for Reduced Order HiGHCISI—

= PIl: Kevin Carlberg

* Problem
- High-fidelity computational physics simulations on HPC systems can take
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hours or days to execute
> Lengthy execution time limits the design space explored during conceptual
design
- Need a faster, more efficient means of simulating complex physics problems
- Technical Approach »»
- Create Reduced Order Model (ROM) from high-fidelity simulation data that Turbulent flow VOFUClty field
Executes faster via dimensionality reduction using autoencoders without significant reduction N
in accuracy . |R?=0.990
- Preserves important physical properties (e.g., conversation laws) o
- Uses Machine Learning Error Models (MLEM) to quantify uncertainty T )
* Results/Accomplishments c% |
- Reduced order surrogate models and theory have been developed for turbulent = 4
flow simulations A
> Runtimes are 100-1000 times faster and are only 1% less accurate than the SVM error prediction

high-fidelity simulations

- MLEM can predict errors with validated statistical properties

Increased production

Main Focus Areas: Data- throughput

driven physics models and
Reduced computational cost

Reduce the design

cycle time Re-think the surveillance
program for the 215t century




@ Diagnosing HPC PerfodiilaiiCeianiatiOnS I

= Pl Vitus Leung

* Problem

> On HPC systems, the same job on the same system can
vary in performance up to 100%

> Leads to poor scheduling
> Results in reduced efficiency (costly on large-scale systems)
> Much of the variations are caused by system anomalies

- E.g., Shared resource contention, firmware bugs, CPU
throttling for thermal control, orphan processes from previous
jobs
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« Technical Approach

> Created an automated ML framework to detect and
classify anomalies

- Based on resource usage data (CPU, memory, network)
> Using concise features, low-overhead
> Generally applicable

Main Focus Areas: Reduced
computational cost

Results/Accomplishments
- Framework outperforms existing methods
> Evaluated in two different HPC environments,

over 0.97 F-Score

- Easy-to-compute statistical feature extraction
o Storage overhead reduced to less than 10%
o Computation overhead below 1% of a single core

Increased production

Reduce the design

cycle time

throughput

Re-think the surveillance
program for the 215t century




@ ML for System Softwa S

: Craig Vineyard
Dragonfly allocation illustration
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* Problem

> The growing complexity of computing systems, ranging from cell phones to
supercomputers, is becoming difficult for developers to manage

> More intelligent and automated mechanisms are needed to avoid unintended
resource oversubscription and manage the placement and movement of data and
computation in extremely heterogeneous systems
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* Technical Approach

- We believe that ML can be utilized to infer intelligent approaches to resource
management

° In particular Reinforcement Learning (RL)

o ML paradigm where an agent makes actions given state observations from an
environment; the environment subsequently emits rewards and new state

Example power profile for MiniFE app
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observations, based on the agent’s actions .’ |
- Technical Direction WM o I&TE“S"*’:"“’U -
- Job allocation for Dragonfly Networks mmo € ontrotter \f_a’t]a ey
o Adaptive P-State control for HPC workloads e —
> Multi-level Memory Management Ay .
* Results/Impact
- Developed RL MODL (Mathematical Optimizations for Deep Learning) library ==
> Quantization study of RL showing results on continuous control problems .
Increased production
Main Focus Areas: Reduced Maintain International HPC/HPDA Reduce the design throughput

computational cost eadershit cycle time Re-think the surveillance
program for the 215t century I



@ Parallel Training of DeeiRESINSNNEURINNEENORSY

= PI: Eric Cyr, ASCR funded project Layer-Parallel training for ResNet

v

8 ° Problem

% - Deep Learning is often viewed as a black box that requires large training 1:-R: - -E
S sets and significant training time HHHE
T : - : :

o > High-consequence decisions made with ML analysis need to be

= explainable and credible

E Proc. O Proc. 1 & Proc. 2 m‘m P-1

‘# - Technical Approach

—l .. . : ‘ Weak Scaling 4 cores

> Training a Residual Neural Network (ResNet) is cast as an optimal control o 198 056 “19
problem subject to nonlinear dynamics 2500 —r— T , ,

1 . ayer-para .e - —+—-

- Classical forward and backward propagation through network layers are 2000 |- ayer-serial - - x-- :
replaced by a parallel MultiGrid Reduction In Time (MGRIT) iteration in the 2 1500 — |
layer domain. =z

= 1000 -
* Results/Accomplishments 500 §

- Unique “Layer-Parallel” approach provides scalable speed-up over serial 0 Lom= : T !

stochastic gradient descent approach to training (~16x at 2048 layers) 236 212 2 1024 28
: : : . : L 7+ layers

8 Theoretlcal baSIS tO |eal’nlng pI’OVIded by dynam|C SyStem Optlmlzat|0n S. Guenther, L. Ruthotto, J. B. Schroder, E. C. Cyr, N. R. Gauger, Layer-Parallel

methodology Training of Deep Residual Neural Networks, preprint arXiv:1812.04352, 2018.

Increased production

Main Focus Areas: Reduced Maintain International HPC/HPDA Reduce the design ""oUBNPUt
program for the 215t century




@ Conclusions {0 P A Y

- Machine learning will provide new capabilities for scientific and engineering
applications

O

O

O

@

Reduced order surrogate models for scientific/engineering problems

o Could help us learn what is wrong/missing in physics models and aid in experimental design

Ability to identify anomalies and regions of interest in inspection and surveillance data
Correlating and certifying simulation and experimental results

For agility of application workflows (automating processes)

» Machine learning will provide new capabilities for HPC system administrators,
facilities, dev-ops, and system software

O

O

O

O

Help model complex behaviors (e.g., failures, degradation, energy)

Automate/adapt usage to comply with more complex policy (e.g., energy consumption)
Adaptable resource management (e.g., network, memory, storage, energy)

“Smart” data-movement for Exascale runtimes
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