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.| Objectives

> Power electronics density target = 100 kW/L
» Power target = 100 kW (1.2 kV / 100 A devices)
> Cost target = $6/kW

» Operational lifetime target = 300k miles

» Barriers:

« Commercial SiC devices may not be designed
specifically for automotive environment

« Commercial GaN HEMTs (lateral devices) are
typically low-voltage (< 650 V), questions exist
concerning reliability (heteroepitaxy)

« Relative immaturity of vertical GaN devices
(performance and reliability)

* Relative immaturity of passive materials relative
to semiconductors (performance / reliability)




s | Approach — System Level View

» Power Electronic Devices:
« SiC or GaN-based
» Higher critical E-field
« Higher-frequency operation
* Increased power density
* Reduced size / weight

 Passives for Power Electronics

« Composite materials for improved inductors « Advanced Motor Designs:

* Improved capacitor lifetime, operating modes  Increased power density

» Higher-frequency operation » Higher speed operation

* Reduced size / weight * Reduced size / weight

\ ’ I |

« Characterization efforts at each point in the system:
» Power electronic devices, passives, motors
« Consortium efforts span multiple levels within system design



Approach — Materials for Power Electronics
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s | Consortium Device Team

» Sandia power electronics team
« Vertical GaN devices: Greg Pickrell, Andy Allerman, Mary
Crawford, Jeramy Dickerson, Andrew Binder
« Device subcontractors: Jon Wierer (Lehigh), Jim Cooper
(Purdue/Sonrisa)
« SiC, power converters, and passives: Jack Flicker, Jason
Neely, Lee Rashkin, Todd Monson, Jon Bock
> SiC devices (design / fab / test)

 Anant Agarwal (Ohio State), Woongje Sung (SUNY)
» Lateral GaN devices

» Shadi Shahedipour-Sandvik (SUNY)
» GaN device testing

> Victor Veliadis (NCSU)
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s| Consortium Coordination for Devices
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-1 Approach — SiC Power Electronics [

« SiC is still young ... but several electric traction drive products have recently
featured SiC devices

* Improving the performance of SiC devices is likely to increase its adoption
» Achieve consortium goals within project timeline

| Gen-1 SiC Inverter
PD550 Si IGBT Inverter 18 kWI/L

9 kWI/L

- Requires 1/3 the space

IEEE-APEC 2019, Anaheim, CA, Sessions #14 and 16




s | SIiC Device Strategy

» SiC is one path to Power Electronics target (shorter term)
« SiC has some commercial maturity and a larger manufacturing base

» SiC device designs may not target automotive applications
» Cost and performance emphasized over reliability
« High temp. operation causes issues with threshold voltage (< 1 V at 150 C junction temp.)
« Gate oxides and channel length designs not optimized for automotive environment

» Focus on design for reliability within cost targets

» Performance and reliability evaluation
» Characterize new device designs under relevant use scenarios

MOSFET Die T

Test device for
reliability
(OSU, Sandia)

\; Fabricate )

Device
(SUNY Poly)

Design for
Reliability
(OSU, Cooper)

Courtesy of Prof. Woongie
Sung, SUNY




| SIiC Device Reliability — Issues

Courtesy of Prof. Anant Poor Gate Oxide Reliability?
Aragwal, OSU
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o1 SiC Device Reliability — Gate Current Example

Gate leakage current (A)
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Work in Progress up to 300°C

Courtesy of Prof. Anant
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w1 SiC Cost Targets

« Targets should be achievable by 2023
« Estimates of chip cost fora 1.2 kV /100 A MOSFET
with an integrated JBS diode (chip size 6 x 6 mm?)

Courtesy of Prof. Woongje
Sung., SUNY

R&D Phase (2018) Low volume (2020) Moderate volume (2023) 200mm substrate with Modera
10,000 chips per year 1 million chips per year volume (2023~)

26 10fe 286w 185¢..

Cost of 150 mm SiC substrate $2500 $1700 $500 $750
Process cost per wafer $5000 $1500 $500 $500
Cost per 100 A die $27 $10 $2.8 $1.85
Total number of chips on a wafer

excluding a 2 mm zone around the

substrate 400 400 400 750
e 70% 80% 90% 90%
Number of functional die per wafer 280 320 360 675

Courtesy of Prof. Anant Agarwal, OSU




21 SiC Device Fabrication

» Reliability/ruggedness evaluation of commercial and SUNY Poly devices
« Ohio State, Sandia

» Evaluate devices in 10 kW, 3-phase test system
» Stress devices in realistic drive cycle scenario (e.g. 10 minute hill climb)

» Devices fabricated by SUNY Poly

» High-performance, high-reliability 900-1700 V SiC JBS diode integrated MOSFETs
* Devices to be fabricated at a commercial foundry
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s 1 Lateral GaN Power Devices

» AlGaN/GaN HEMT is the most mature GaN power device, but continues to
suffer from less-than-ideal reliability due mainly to growth on foreign

substrates (e.g. SiC, Si, Sapphire)
» Consortium work will focus on growth and fabrication of AlIGaN/GaN

HEMTs on native GaN substrates
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Courtesy of Prof. Shadi
Shahedipour-Sandvik, SUNY
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» Eliminate strain engineered layers by
growing on native GaN substrates
» Lower defect density is expected to
lead to better device performance and
reliability
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4| Vertical GaN Power Devices

Ohmic metal » Vertical device architecture enables
" e higher breakdown voltages
« Similar to Si and SiC power devices
« Better performance due to higher
critical electric field for GaN
> Less mature — Challenges exist with
substrates, growth, and processing
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System Benefits for Vertical GaN

System evaluation of diode power dissipation vs. diode type
for given operating regime (reverse voltage, forward current
density, frequency), T = 300 K

10,000/ J =500 A/cm? |  LowerR,, for
| j GaN SBD and
> 7500 GaN PiN Preferred/ | JBS diodes drive
) %"“‘Sic MPS Preferred expected
D 5000 | performance
L benefits
S
2500 GaN SBD Preferred - Target operating
voltage for EDT
0 power devices:

100 1E3  1E4 1E5 1E6 1200 V (blue line)
Frequency (Hz)

J. Flicker and R. Kaplar, IEEE WiPDA, Albuquerque, NM (2017)




s | Evolution of Vertical GaN Devices

Follow successful commercial model of staged
device integration from Si + SiC development

Stas?g k Device modeling,
MOSFET + circuit simulation
iC Di at each stage

SiC Diode

)

Stage 2:
SiC

MOSFET +

GaN Diode

Characterization

and evaluation of Stggil&
device technology MOSIa:ET X

at each stage GaN Diode




Microns

71 Progress on GaN Vertical Devices

» Decision to focus resources in first year on the vertical GaN diode
 Allows staged combination with SiC transistors.
» Schottky Barrier (SB) and Junction Barrier Schottky (JBS) diodes

» Modeling/Simulation is underway
» Have developed SB diode models in Silvaco simulation software
» JBS diode models are under development
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s | Progress on GaN Vertical Devices

» Gen1 GaN SB Diodes demonstrated
« SB diodes are being characterized and used to calibrate models
« Focus on good Semiconductor-Metal interface for Gen1 devices

» Mask designs for JBS diode development completed _
- Exploring different design strategies JBS Diode Mask

» Using SiC devices to understand current scaling methods

SB Diode IV over Temperature
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o | Passive Materials for WBG Power Electronics

» Innovate passive materials for high-frequency power electronics

* |Improve ceramic capacitor performance and reliability
» Increase frequency of magnetic materials and reduce size of inductors
* Increase power density through integration (vs. discrete components)

Vacancy /

Oxygen __~ v/—/

Diffusion o- go
Oxygen
Vacancy g -
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« Ceramic capacitor aging caused by oxygen
diffusion toward anode and accumulation of
oxygen vacancies at cathode

« Bipolar switching at ~10x the rated voltage
and 125°C above the rated temperature can
increase the lifetime
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With permission from Getty Images

Inductor designs may be improved with
tailored Fe,N composites

« Smaller size

* Higher-frequency operation

* Operating temperatures up to 200°C
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Critical electric field (MV/cm)

Future Work: UWBGs?
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2 | Summary

> Systems-level view has identified key areas to focus on for device
development

« Wide-bandgap power devices — SiC and vertical GaN devices are main
efforts, with some work on lateral GaN

« Close coordination between Sandia, other DOE labs, and key universities

» SiC device improvement will be driven through “design for reliability”
approach with performance metrics and cost in mind

* lterative cycles of design, fab, and performance and reliability evaluation
across partner institutions

» GaN device development is underway
- System-level benefits being evaluated
« HEMT effort focused on reliability
 Vertical GaN Schottky and JBS diode work is in progress
 Vertical GaN MOSFET work starting

> Suitable passive components are required to take full advantage of WBGs




