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high channel count,
compact electronics

« Sandia Compact
Electronics for Modular
Acquisition (SCEMA)

— 16+2 channels
— 5 GS/s (DRS4)
—14cmx 6 cm

* Need high performance, \ CE @E"—

J. Steele, J. Brown, et al.

2019 JINST 14 P0203
doi:10.1088/1748-0221/14/02/P02031
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— Revision in progress
« UH SCROD

— Full stack, 128 channels
— 2.7 GS/s (IRS3D)
— Self-triggering

Kurtis Nishimura, et al.
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Emergency
response

Need imaging for imaging?
Yes.
Check.

P Y DN
A e \ 2NN

Arms control treaty verification

SNM imaging applications
> High resolution required
* Fine detector segmentation

> Multiple or extended
sources

Brubaker/SVSC



We develop systems for eventual application in a range of scenarios:

HING,

SNM detection/localization

> Low signal rate
* Need large area detectors!

> Low signal to background

e Need background
discrimination!

Need directional information for localization?
Not necessarily, but it sure is helpful.

Need imaging for detection?
This is not a trivial question.
For detection, break it into two sub-cases:
* Background unknown
* Background known
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Detection again

> What about when the background is
independently known?

« Example: portal monitor. Effectively
have repeated background
measurements in between occupancies.

 Example: building monitoring. Looking
for changes in the rad field due to an
approaching source.
> Now is there an advantage from
imaging?
 In principle, yes, because background is
reduced by directional info.

* But real imagers have complex
directional info (angular resolution).

* Also generally take a hit on efficiency.

Case: background known

Study by Paul H (ORNL)

Look at detection in background-known case

Understand tradeoftf between efficiency and background rejection
Specific plot below shows how area of detector needs to change
as function of distance to the source

Punchline: Imager scales better than counter, but has to overcome
efficiency reduction—only helps when detector areas are
unreasonably large..
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Detection again

> What about when the background is
independently known?

« Example: portal monitor. Effectively
have repeated background
measurements in between occupancies.

 Example: building monitoring. Looking
for changes in the rad field due to an
approaching source.
> Now is there an advantage from
imaging?
 In principle, yes, because background is
reduced by directional info.

* But real imagers have complex
directional info (angular resolution).

» Also generally take a hit on efficiency.

Case: background known

Study by Paul H (ORNL)

Equal area detectors, background known

Specific plot below uses one particular set of assumptions
(bg rate, exposure time, etc.)

Punchline: Difficult to achieve performance to beat gross

counter.
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Counts

> Neutron directional information
analogous to gamma spectral
information for detection.

« Estimate background (systematic).

e Ignore most background
(statistical).
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Gamma-Ray Spectra of Natural Background

____High Purity Germanium _
(excellent efficiency and resolution)

Image credit: ORTEC
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>Summary: need imaging?
* Imaging applications: Yes

- Emergency response diagnostics,
Arms control treaty verification

* Localization: Yes

- Direction to detected source

e Detection, background unknown:

- Long-dwell standoff detection

e Detection, background known:
Need very high quality imager

- Portal monitor, building monitoring
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We have demonstrated
feasibility in simulation—

information content is there.

Technical achievability is
not guaranteed—need to
integrate multiple cutting-
edge technologies.

SVSC project

Prototyping

Monolithic

- -
‘f'mavav,svavaﬁa.v",

Opt. Segmented

Components

P%wmd@memm

Electronics

e g (] ]

Why i1s fast timing important?

* Distinguish interactions 2 ns & 3
cm apart

* Determine TOF to ~10% — 200 ps

* Correlated with position resolution:
c¢/n=20 cm/ns — 3 mm ~ 15 ps

System components:

1. Organic scintillator—fast plastic,
O(1 ns) decay time

2. Fast photodetectors—MCP-PMTs,
SiPMs, etc. Low tts ~100 ps if
possible

3. Fast electronics—sufficient to take
advantage of PDs. Must be scalable

4. Algorithms—use all information
available

Brubaker/SVSC 8



Single Bar Results — Event time

BERKELEY LAB
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dignals with DRS4 daisy chain
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Position resolution. Fast-output. Energy cut 300-400 keV

* Far channels configuration
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Position resolution. Standard-output. Energy cut 300-400 keV

* Far channel configuration
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OCA Design Scintillator (EJ20x)

MAPMT (H9500)

. Light guide Retroreflector
* 2 designs Air/ESR/Absorber/ESR/Air
e Modeled Uging Geant4 == = « Coded aperture plane
e Require different
Opprocches to == e s e o e o <,‘:>
reconstruction
= I 0
# OAK RIDGE Slab design hitiegonal 1l
National Laboratory

design




OCA Design: Slabs Air/ESR/absorber/ESR/Air

Top view
\ \‘\
« Building slab design
prototype 8
: (B I N I IN I IN I IIN Il
Retroreflector
14.4 cm
Scm Specular/TIR Retro
Scintillator 5
v
| Light guide
Mask
MAPMT e
y > Side view




OCA Design: Slabs

Retroreflector
3 mm, rank 11 mask, : 14.4 cm

detector, and slab
pixel sizes

« EJ200 5cm

e 14.4cm (3 Scintillator |
photodetectors) / V Light guide
long e

Z
« Scmtdall /1/ S MAPMT
. . > Side view
« 2Ccmgap light gu|de/ X

1 cm focal length « Air/reflector/absorber/reflector/air in
gaps between slabs
« Narrow edges black
« Reftroreflector on top

Mask

QA RivGr




OCA Event Reconstruction: Sample Event

e Random two-scatter event from

simulation
e Recoil 1: 675 keV deposited Top view
- 49 photons detected in slab 12 ——
4
» Recoil 2: 544 keV deposited 7

— 53 photons detected in slab 8

1
2/

Side view
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OCA Event Reconstruction: Sample Event

Pulses: Slabs 8 & 12

Slab Hits
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Peak Image Counts
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Distance Between Scatters

Results

"é"‘ ’ I ' ! ' ! I ' y ' '
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e 252Cf point  Select events  £w} P
8

source 1 maway in which 2+

(+2) slabs trigger -
with > 10
photons each :

102 E_

e 320k recoills total
e 41796 recon’'d
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Results Summary

* |Image created using

simple back-projection /
« 41.7k events
¢ ~25° FWHM

-

2.67 3.87 72 8 259 41 2 4.34 425 0.197
FWHM  3.77 5.60 145 595 479 6.86 846 0.220
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Parameter Study Results

I e ) e

Base 3.77 5.83 145 6.86 0.220
6 mm pixels 10.9 12.9 175 644 719 14.9 945 0.330
2.5 cmtall 3.68 3.73 130 594 419 4.79 798 0.220
7.5 cmtall 5.82 7.89 170 594 620 9.89 895 0.240
10 cm tall 6.86 14.9 190 644 778 1}8%9 945 0.280
No airgap 4.80 5.86 220 595 658 7.87 845 0.410
Edge 5.81 5.86 99.6 694 419 8.91 995 0.300
reflector

2.5 mm gap 14.9 15.9 165 594 778 20.9 847 0.460
guide

5 mm gap 7.88 8.89 155 644 538 11.9 896 0.270
guide

15 mm gap 3.66 4.78 150 595 458 4.79 845 0.200
guide

0.5 cm focal 3.64 2.73 130 594 439 4.77 895 0.200
1.5 cm focal 3.73 4.80 145 595 458 5.80 846 0.210
2.5 cm focal 4.79 6.85 155 643 499 7.87 847 0.229
No 4.77 5.83 205 594 659 6.86 797 0.240
retroreflector
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ALD Capabilities at AMD

Substrate size (2”x18") in situ QCM, QMS, FTIR, IV

(ALD powder coater 1 kg ) 60" Lx6"dia. long tube ALD

Argonne &




ALD Capabilities at AMD

Oxford FlexAL PEALD, 8” wafers,
auto-load, in situ ellipsometry and
emission spectrometry

Beneq TFS500 —3D chamber, large substrates,

scale-up, batch coating (15 x 300mm wafers)

WBG semiconductor
GaN, AIN, B-Ga,0,, etc.

(Li-metal) and films
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