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• Need high performance,
high channel count,
compact electronics

• Sandia Compact
Electronics for Modular
Acquisition (SCEMA)

— 16+2 channels

— 5 GS/s (DRS4)

— 14 cm x 6 cm

— Revision in progress

• UH SCROD

— Full stack, 128 channels

— 2.7 GS/s (IRS3D)

— Self-triggering
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We develop systems for eventual application in a range of scenarios:

Emergency
response

Need imaging for imaging?
Yes.
Check.

Arms control treaty verification

SNM imaging applications

➢High resolution required
• Fine detector segmentation

➢Multiple or extended
sources

i
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We develop systems for eventual application in a range of scenarios:

Standoff detection

.
Cargo screening

SNM detection/localization
➢ Low signal rate

• Need large area detectors!

➢ Low signal to background
• Need background

discrimination!

Need directional information for localization?
Not necessarily, but it sure is helpful.

Need imaging for detection?
This is not a trivial question.
For detection, break it into two sub-cases:

• Background unknown
• Background known
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Detection again
Case: background known

> What about when the background is
independently known?
• Example: portal monitor. Effectively
have repeated background
measurements in between occupancies.

• Example: building monitoring. Looking
for changes in the rad field due to an
approaching source.

> Now is there an advantage from
imaging?
• In principle, yes, because background is
reduced by directional info.

• But real imagers have complex
directional info (angular resolution).

• Also generally take a hit on efficiency.

• Study by Paul H (ORNL)
• Look at detection in background-known case
• Understand tradeoff between efficiency and background rejection
• Specific plot below shows how area of detector needs to change

as function of distance to the source
• Punchline: Imager scales better than counter, but has to overcome

efficiency reduction only helps when detector areas are
unreasonably large..
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Detection again
Case: background known

➢ What about when the background is
independently known?
• Example: portal monitor. Effectively
have repeated background
measurements in between occupancies.

• Example: building monitoring. Looking
for changes in the rad field due to an
approaching source.

> Now is there an advantage from
imaging?
• In principle, yes, because background is
reduced by directional info.

• But real imagers have complex
directional info (angular resolution).

• Also generally take a hit on efficiency.

• Study by Paul H (ORNL)
• Equal area detectors, background known
• Specific plot below uses one particular set of assumptions

(bg rate, exposure time, etc.)
• Punchline: Difficult to achieve performance to beat gross

counter.
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➢ Neutron directional information
analogous to gamma spectral
information for detection.
• Estimate background (systematic).
• Ignore most background

(statistical).
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>Summary: need imaging?

• Imaging applications: Yes

- Emergency response diagnostics,
Arms control treaty verification

• Localization: Yes

- Direction to detected source

• Detection, background unknown:
Prohably

- Long-dwell standoff detection

• Detection, background known:
Need very high quality imager

- Portal monitor, building monitoring
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We have demonstrated
feasibility in simulation
information content is there.

Technical achievability is
not guaranteed need to
integrate multiple cutting-
edge technologies.

SVSC project
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Why is fast timing important?
• Distinguish interactions 2 ns & 3

cm apart
• Determine TOF to —10% —> 200 ps
• Correlated with position resolution:

c/n = 20 cm/ns —> 3 mm 15 ps

System components:
1. Organic scintillator fast plastic,

0(1 ns) decay time
2. Fast photodetectors MCP-PMTs,

SiPMs, etc. Low tts —100 ps if
possible

3. Fast electronics sufficient to take
advantage of PDs. Must be scalable

4. Algorithms use all information
available
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Signals with 1E54 daisy chain
• Fast-output • Standard-output
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Position resolution. Fast-output. Energy cut 300-400 keV

Near channels configuration
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Position resolution. Standard-output. Energy cut 300-400 keV

• Near channels configuration
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OCA Design

• 2 designs

• Modeled using Geant4

• Require different
approaches to
reconstruction

*PAK RIDGE
"r-- National Laboratory

-M-

Slab design

Scintillator (EJ20x)

Light guide

Air/ES R/Absorber/ES R/Air

Coded aperture plane

MAPMT (H9500)

Retroreflector

Orthogonal 1D
design



OCA Design: Slabs

• Building slab design
prototype

Retroreflector
14.4 cm

Scintillator

Light guide

MAPMT

x

*PAK RIDGE
National Laboratory

Side view

Air/ES R/a bsorber/ES R/Air

4.8 cm

5 cm

Mask

Top view

S pecu lar/TIR Retro



OCA Design: Slabs

• 3 mm, rank 11 mask,
detector, and slab
pixel sizes

• EJ200

• 14.4 cm (3
photodetectors)
long

• 5 cm tall

• 2 cm gap light guide

• 1 cm focal length

A

Retroreflector
14.4 cm  .

Scintillator

/ Light guide

x Side view
MAPMT

5 cm

Mask

• Air/reflector/absorber/reflector/air in
gaps between slabs

• Narrow edges black
• Retroreflector on top
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"C National Laboratory



OCA Event Reconstruction: Sample Event

• Random two-scatter event from
simulation

• Recoil 1: 675 keV deposited
- 49 photons detected in slab 12

• Recoil 2: 544 keV deposited
- 53 photons detected in slab 8
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OCA Event Reconstruction: Sample Event
Slab Hits
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Results

• 252Cf point • Select events
source 1 m away in which 2+
(+z) slabs trigger

• 320k recoils total 
with > 10
photons each

• 41796 recon'd
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Results Summary

• Image created using
simple back-projection

• 41.7k events
• --25° FWHM

MI AX (mm)

a 2.67

FWHM 3.77

AZ (mm) At (ps) En (keV) Ad10 (mm) atio (ps) a6/3 (rad)

3.87 72.8 259
1
412 4.34 425 0.197

5.83 145 595 479 6.86 846 0.220
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Parameter Study Results

le
Base

6 mm pixels

2.5 cm tall

7.5 cm tall

10 cm tall

No airgap

Edge
reflector

2.5 mm gap
guide

5 mm gap
guide

15 mm gap
guide

0.5 cm focal

1.5 cm focal

2.5 cm focal

No
retroreflector

AX (mm) AZ (mm) Ep (keV) At (ps) Er, (keV) Ad10 (mm) atio (ps) AB (rad)

3.77 5.83 145 595 479 6.86 846 0.220

10.9 12.9 175 644 719 14.9 945 0.330

3.68 3.73 130 594 419 4.79 798 0.220

5.82 7.89 170 594 620 9.89 895 0.240

6.86 14.9 190 644 778 13.9 945 0.280

4.80 5.86 220 595 658 7.87 845 0.410

5.81 5.86 99.6 694 419 8.91 995 0.300

14.9 15.9 165 594 778 20.9 847 0.460

7.88 8.89 155 644 538 11.9 896 0.270

3.66 4.78 150 595 458 4.79 845 0.200

3.64 2.73 130 594 439 4.77 895 0.200

3.73 4.80 145 595 458 5.80 846 0.210

4.79 6.85 155 643 499 7.87 847 0.229

4.77 5.83 205 594 659 6.86 797 0.240
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Cross-Flow ALD reactor with In-situ QCM/QMS/FTIR

QMS QCM FTIR

Argonne 
RATORY

A
NATIONAL LABO 



ALD Capabilitiec ; titit
Substrate size (2"x18"), in situ QCM, QMS, FTIR, I-V

(ALD powder coater 1 kg ) 60" L x 6" dia. long tube ALD
Portable AL

synchrotron X-
— in situ
y studies

Argor,?ne A



ALD Capabilities at AMD

Oxford FIexAL PEALD, 8" wafers,
auto-load, in situ ellipsometry and
emission spectrometry

WBG semiconductor
GaN, AIN, 13-Ga203, etc.

Beneq TFS500 —3D chamber, large substrates,
scale-up, batch coating (15 x 300mm wafers)

Glove box system for air sensitive substrates
(Li-metal) and films


