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Proton light yield
• To calculate incoming neutron angle

we must know the mapping between

measured light and proton recoil

energy (Ep), called the relative

proton light yield relation (PLY)

• PLY affects imaging performance

Scintillator

Material

EJ200

EJ204 Published

EJ208

Published Plastic

Plastic

Published Plastic

EJ230 Submitted Fast plastic

EJ232

EJ2320 Submitted Fast plastic

Submitted Fast plastic

T.A. Laplace et al, NIM A 842 (2018).
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D-Breaku • neutron source
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. 
PLY measurements at UCB/LBNL

Beam time supported via collaboration

with the Nuclear Data Group in the

Nuclear Science Division at LBNL through

US DOE-SC

Broad spectrum

beam allows for

continuous

measurement of

proton light yield

relation
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Proton recoil energy vs. light yield (EJ-230)
. •

Relative light output of 1 = Light from a 477 keV recoil electron (Compton edge of 137Cs)
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Light-yield fitting (EJ-230
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PLY results: EJ200, EJ204, and EJ208
• Measurements of EJ20x series

agree with literature

• First measurement of PLY to such
low energies (e"50 keV for EJ204)

10

10-2

• EJ-204 High Gains

- EJ-204 Low Gains
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PLY results: EJ230, EJ232, and EJ232Q
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. 
PLY results: size comparison

• Enqvist, et al: relative light
yield depends on scintillator
size (i.e. not just a property
of material)

• This should be visible in
EJ232 and EJ232Q due to
short attenuation lengths

• Relative proton light yields
for 2-inch and 1-inch cells
are within error

Enqvist, et al. NIM A 715 (2013).
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Does PLY matter? Yes!
• In simulation, we use a PLY to generate

light from proton recoils

• Then, analyze data using either the
appropriate model-input PLY or with a
separate PLY from the literature to
calculate the recoil energy
— Model-input: Laplace, NIM 2018.

— Non-model-input: Pozzi, NIM 2004.

• The final backprojected images show a
clear impact
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1 Scintillator Pulse Shape Measurements
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13 113ulse Shapes In Event Localization
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1 Time Correlated Single Photon
Counting
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1 Temporal Resolution of Time
Correlated Single Photonscinti llator
Counting  
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ITime Correlated Single Photon Counting
(A Modern Interpretation)

2

4

7

r I l

Ti

PHOTEK PMT-210 Fast Plastic

—30ps std dev SPTR Scintillator

H6533 PMT Assemblies

—70ps std dev SPTR



1 Resolution of Modern Setup
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1 Resolution of Modern Setup
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1 Pulse Shapes
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1 Pulse Shapes
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1 Pulse Shapes
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1 Pulse Shapes
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23 Model Comparison
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2] Event Localizatio
• Spatial information Is

negligibly affected by
incorrect time
constants
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251 Event Localization Impact
• Spatial information Is

negligibly effected by
incorrect time
constants

• Timing of single
interaction is
adversely affected
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261 Event Localization Impact
• Spatial information Is

negligibly effected by
incorrect time
constants

• Timing of single
interaction is
adversely effected

• Time difference is less
affected by the use of
incorrect time
constants
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„1 Summary And Outlook

• Proton Light Yields have been
measured for an array of prospective
scintillator candidates.

• Scintillator Pulse Shapes have been
measured with temporal resolutions
under the anticipated uncertainties of
the monolithic detector

• Results are being shared with the
community via publications in peer
reviewed journals

• Initial experiments have been
conducted at the 88-Inch Cyclotron for
measuring proton pure pulse shapes.

• Design and construction of apparatus
for measuring the absolute light
production in scintillators of interest is
underway
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Atomic Layer Deposition for Microchannel
Plates (MCPs) Functionalization

Anil Mane*, Max Gebhard, Steven Letourneau, Jeff Elam

(SVSC Project Review Meeting @ SNL)

06/25/2019

(*amane@anl.gov)
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Discussion Topics:

1. Our role and objectives

2. ALD process development for (SEE and Resistive layers)

3. Understanding the ALD layers composition stability

4. Construction of In-situ ALD-MCP testing system

5. Near Term Plans

Arg91212s:.,



Microchannel Plates (MCPs): Applications

■ Photodetectors, time-of-flight (ToF) mass spectrometry, molecular and atomic
collision studies, electron microscopy, field emission displays, and night vision
goggles and binoculars, medical imaging (PET scanners), homeland security
(scanners for shipping containers and trucks), X-ray and Neutrons detection

■ HEP experiments
LBNE/DUNE4LBooNE @Fermi Lab,

Super-K RICH and BELLE II @Japan,

LHC, ATLAS and CMS @CERN,

Mark-I @SLAC

PANDA @FAIR Germany,

JUNO @China,

CLAS12 @Jefferson Lab,

NASA Space Mission

SNL SVSC Project: Fission-energy neutron imaging

Arg91212s:.,



Conventional MCPs
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issues: 
• Expensive and need to import
• Resistance of MCP and secondary
electron emission properties are linked PbOx
• Very long conditioning timing
• Available in small form factor
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Conventional MCPs

i•
itt 
pinew
• • • •I lbaha•Ali•illi

n
• • ••• W.r. 

41....16,,..

•

oil•:•41...•••••1̀ •••••••walloi•••••••••••••••••••••••ticee_.4•til'•

PRIMARY
RADIATtON

ELECTRICAL
POTENTIAL

SEMICONDUCTING
LAYER r

SECONDARY
ELECTRONS

OUTPUT
GLASS ELECTRONS
CHANNEL

Conventional Fabrication Method:
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• Available in small form factor

ALD-MCPs

33 mm

(a) (b) (c)

1) Resistive coating (ALD)
2) Electron Emission coating (ALD)
3) Contact electrode (PVD)

Electrode end spoiling

ALD SEE
coating

Pore glass
wall

ALD Resistive coating

1. A. Mane et. al., SPIE (2011)
2. D. Beaulieu, et. al., Nucl. lnstr. Meth. Phys. A, 633, S59, (2011)

(d)
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Resistivity for MCPs

Ag 10 T 0 2 A1203 Si02
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Resistivity for MCPs

Ag Mo

m 71 71 7' m
8

cr, 51' .1?. F., r.

TiO2 A1203 Si02

o 
O

m m m m m Ill m m m m m N1 f 11 m m m m
7' + + + + + + + + + + + +

0 0 
Co, 
0 

A 
0 

0 
0 0

a IV 0
0 0 
, , CO s O : it i, it in Ot
• 

Requirement:
Resistivity (0 cm)--> "mid-range"

rootAs semiconductors insulators

• Practically no naturally occurring materials with

"mid-range" resistivity of 106-1010 Ocm

• Must be synthesized or engineered

7000

6000

5000

4000

3000

2000

1000

o

Atomic Layer Deposition (ALD)

Example: ALD A1203 using TMA-H20

A

TMA —""=-- Purge a a

IP 4 IP <" • • • ai
if\ /1 Lt./ "'

77777 7 (\F 
One

ALD

cycle
H20

• *
• • • Purge • • • • --,

• I • /
• • • '''x•;" • 7 •
5- 1—"*" Sao 4/ / \r.

1'
,

f P P r 

Desire
thickness

Timing = 1-5-1-5
T = 177 °C

• , • Ellipsometry
A , 0 Profilometry

ZnO Growth Rate
=- 2.01 A/Cycle

ZnO

A120,

A120, Growth Rate
= 1.29 A/Cycle

0 500 1000 1500 2000 2500 3000 3500

AB Cycles

in Aspect ratio (length/width) — 10

Argonne 
RATORY

A
NAT ION AL L BO 



Current strategy for preparing ALD-MCPs: Functionalization of porous capillary glass

For development work
Micro capillary array (MCA) Glass Plate

0 •
1) Resistive coating (ALD) •
2) Electron Emission coating (ALD) •

3) Contact electrode (PVD) •

Surface area = 8.7 m2
Pore size = 20µm
Thickness of plate=1.2mm

• Aspect Ratio = 60
• No. of Pores = -80Millions
• Porosity = 65%
• Bias Angle = 8°
• Sensitive Surface to OH
• Complex Geometry

Worlds Iargest MCPs

20cm

20cm

Very challenging substrate to coat
for any thin film deposition method

As MCPs are electron amplifier 4 All the material
processing issues also gets amplify

Argor,?ne vS



Objectives:
Present LAPPD

(LAPPD =
Large Area (20cm x 20cm )
Picosecond Photo-Detector)

Value Features: 
• Stable high gain (106-107)/pair
• Least scrubbing time (few days)
• Low dark counts (20 Cts/s/cm2)
• mm spatial & time resolution (<50ps)
• Long life robust performance

Key component ALD-MCPs

Next generation ALD MCPs:

• Materials design & stability analysis
• Fast screening of SEE materials via in-situ ALD-MCP testing
• Regulating TCR properties of R layer
• Harsh environmental effect testing (CO2, OH*, etc.)

Application:
Fission-energy neutron imaging
(SVSC project)

Our role and solutions: 
ALD coatings segment
• Secondary electron emission (SEE) layer
• Resistive (R) layer
• Processing cost optimization
• Constant support (biweekly call)
• MCP supply as and when needed

Argor,?ne,..,



Development of alternative resistive coatings via ALD
(E.g. F-Free ALD chemistry)

• Paper submitted to Chemistry of Materials
• Invention Submitted (ANL-IN-19-0057)
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ReAl0 resistive coating: ALD Process optimization, in-situ QCM

• Trioxymethylrhenium(VII) + Trimethly aluminium (TMA)

CH3 

+ 

CH3

)Rez-Ik H3C ACH3.

0

Idea is based on current LAPPD baseline ALD-MCPs process that TMA can be
use as a "reducing precursor"
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Microstructure and Composition of ReA1.0y

Amorphous microstructure
A
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o
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n
t
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Development of secondary electron
emission (SEE) layers

• Paper draft is circulated
• Pending Patent Application (ANL-IN-19-039)
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Development of ALD CaF2 SEE layer for MCPs

QCM trace
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SEE layer variation MCPs gain comparisons
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Understanding of Fluorine in
Current ALD baseline process for
8"x8" MCPs that used in LAPPDs

Arg,9121A2s:.,



Current baseline ALD process for MCPs that used in LAPPDs

1) Current resistive coating process called as "Chem-1"
• Has combination of (A1203 oxide + W metal)
• W process is based on WF6 which results in complex material AIFOWC

2) Secondary electron emission coating is Mg0 on top of "Chem-1"
• When we do final annealing of the MCP F from AIFOWC intermixed with Mg0

and forms stable complex SEE layer

Questions:
• Effect of F on MCP properties especially resistance?
• How to trailer F intermixing?
• How to prevention of F-migration?
• Can SEE properties tuned?
• Over all stability ?

Arg91212s:.,



Samples Details: (ALD grown layer on Silicon (100))

*

*

Current Baseline for MCPs
SEE (10nm) Annealing

for 4 hrs in N2

Chem-1

Chem-1 Mg0

Chem-1 Mg0 400C

400C after chem-1 + baseline
1st Annealing
for 4 hrs in N2

Chem-1 400C

Chem-1 400C

Chem-1 400C

2nd Annealing
for 4 hrs in N2

Mg0

Mg0 400C *

5nm A1203 barrier after chem-1 + baseline

*

IIMI Barrie
(5nm

SEE
(10nm)

Annealing
for 4 hrs in N2

Chem-1 A1203

Chem-1 A1203 Mg0

Chem-1 A1203 Mg0 400C

400C after chem-1 + 5nm A1203 barrier after 400C + baseline

lirl s7ouinealing Barrier
for 4 hrs in N2 (5nm)

SEE
(10nm)

2nd Annealing
for 4 hrs in N2

Chem-1 400C A1203

Chem-1 400C A1203 MgO

Chem-1 400C A1203 Mg0 400C

Observation matrix:
a) Annealing effect on overall composition of Chem-1, MgO, ALO
b) Overall F level variation across the thin films stack
c) F -interaction with MgO, and ALO
d) Interaction of Mg0 —ALO
e) Interface of Mg0-ALO, MgO-Chem-1, ALO-Chem-1 (as deposited, and with thermal treatment)
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Final Comparison (removed W, O, and C peaks)

Baseline = (Chem-1+ Mg0 + 400C)
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0 .
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• Annealing after Chem-1 process
shows —50 less F migration in Mg0
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Final Comparison (removed W, O, and C peaks)

Baseline = (Chem-1+ Mg0 + 400C)
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F migration is —75% less
for Al203 capping.
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Final Comparison (removed W, O, and C peaks)

Baseline = (Chem-1+ Mg0 + 400C)
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• Both 400C annealing (Or/and )
ALO capping after chem-1 process
as strong bias effect on F diffusion.

• Looks like Mg0 stays — same

• Final annealing still has
adequate effect on F migration

0
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CaF2 as SEE layer on Chem-1 baseline R process (WAIOFC)
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Understanding F- migration with MgO-CaF2

8nm Mg0 -20nm CaF2
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• F-migration did not occur in Mg0 due to stable CaF2 stoichiometry
• This suggest that F in Chem-1 is un-bonded
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Construction of the in-situ ALD
reactor-MCP testing system
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Advantages:
• Quick screening of secondary electron emission (SEE) materials

(Thickness optimization and complex material testing)

• No air exposure after ALD coatings

• Study of different atmosphere exposure on MCPs

• TCR measurement in high vacuum condition

• Degassing and scrubbing of final MCPs

Arg,9121A2s:.,



In-situ ALD reactor-MCP testing system

MCP testing chamber Transfer chamber ALD chamber
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In-situ ALD reactor-MCP testing system

Precursors
flux direction

33mm MCP in Ceramic holder
Inserted in ALD precursors path

.04

Precursor valve anifold Vaporizer or solid

(up to 6 precurs•rs ) subliming precursor

Argicr ne



In-situ ALD reactor-MCP testing system
Si coupon placing
on 33mm MCP
For ALD qualification

33mm MCP in
Ceramic holder

Feedthrough for various
electrical connections

MCPS gain measurement
arrangement

Anode plate for
electron signal collection

Argicr ne



In-situ ALD reactor-MCP testing system: LabVIEW program
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Next tasks:

• Perform in-situ ALD MCP-gain measurements with various SEE layers

• A1203, MgO, MgF2, CaF2, Ti02, CsO, and many more

• Establish empirical relation of gain vs. SEE yield (6)

• Environmental study on potential SEE layers

• Transfer process knowledge to lncom for next generation LAPPDs

• Continue search for Resistive and SEE layer

• Explore new low TCR ALD materials

• Submit papers

Thank you !!
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Motivation

• Large number of readout channels in a radiation detection system requires a
high channel-density data acquisition system

• Frequency domain multiplexing combines multiple detector signals into a
single readout channel

• This enables reduction of digitizer input channels for data acquisition

60



Application to SVSC

• The Single Volume Scatter
Camera prototype will have
128 photodetector output
channels to reconstruct the
incoming neutron path

• We can multiplex at least
10 channels into 1

Prototyping
Monolithic Opt. Segmented

Components
Scintillators Photodetectors
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Introduction

• Frequency domain
multiplexing (FDM) has
been previously
implemented for current-
mode radiation detectors
using modulation and
demodulation

• We have developed a new
way to multiplex pulse-
mode radiation detectors
by convolution and
deconvolution
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Circuits

R2

Vinput (anode
pulse)

Resonator

R1

Resonant frequency, fr -..--'"

Voutput (sinusoid)

1

2T4L1C1

Q-factor, Q = R1 
L1

Ci

Fan-in

R2
Vinput (sinusoid 1)

Vinput (sinusoid 2)

Vinput (sinusoid 3)

Vinput (sinusoid 4)

Voutput

R6 R6 R6 R6
voutput = (

R2
Vsinel + IT

3 
Vsine2 + —

R4
Vsine3 + —n Vsine4

i-c5

Gain = 2

63



FDM Setup

• Two EJ-309 fast organic
detectors were
connected to two
resonators respectively

• Two resonators were
combined by the fan-in
circuit

• Each resonator has a
pass-through for
simultaneous digitization
of the detector pulse
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Impulse Response and Deconvolution

• Deconvolution is performed in
the frequency domain

V) 
X(f) =

x(f)

• The FDM impulse response is
measured from

H (f) = 
Syx (f) 

Sxx (f)

• Syx(f) is the cross-

correlation of
output with noise input

• Sxx(f) is the autocorrelation
of noise input
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Signal Reconstruction
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Energy and Timing Estimation Using the Recovered Pulse
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• For a EJ-309 fast organic
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Particle Identification via Pulse-Shape Discrimination
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Double Occupancy

• When two detectors produce signals in the same digitizer record, but the pulses do not overlap

• In frequency domain, Y = H1X1 + H2X2
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Double Occupancy
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Energy and Timing Estimation for Pulse xl
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Energy and Timing Estimation for Pulse x2

700 -

600 -

C 200 -
ra

100 -

e-s. 900 
V)

0) C
c ........

895 -
V) W
V) 0
0
S- D 890 -

U a

0 a)

l(r) -0 885 -

N 0
C

CD RI 880 
-1.1-

U C
0
`---' 875  

100 200 300 400 500

recovered charge
(keVee)

600 700

875 880 885 890 895

CFD zero crossing
(on recovered pulse) (ns)

900

3500

3000

2500
(J)
4-0
E 2000

D
0 1500

U
1000

500

0
-20 -15 -10 -5 0 5 10 15 20

anode charge - recovered charge
(keVee)

3500 -

3000 - a = 110 ps
ln 2500 -
4-1
C 2000 -
D
0 1500 -
L.)

1000 -

500 -

0
-600 -400 -200 0 200 400

anode timing - recovered timing
(ps)

72



Particle Identification for Pulse xl
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Particle Identification for Pulse x2

(u
si
ng
 a
n
o
d
e
 p
ul
se
s)
 

0.8

0.7

0.6

0.5

0.4

500 1000 1500 2000

QL (keVee)

500 1000 1500 2000

QL (keVee)

2500

2500

i

30

25

20 VI
-I-I

5

30

25

20

15

10

5

900  

800 -

700 -

til 600 --6-,
C 500 -

0 
= 400 -
U 300 -

200 -

100 -

Figure of Merit = 0.99

o -.id I I I

0.45 0.50 0.55 0.60 0.65 0.70

QS (using anode pulses)TL

900  

800 -

700 -

V) 
600 -

4-1
c 500

O • 400 -
Li 300 -

200 -

100 -

0.75 0.80

Figure of Merit = 0.96

0  ,
0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

—
Qs (using recovered pulses)
QL



When pulses overlap?

• When second pulse arrives at the tail of the first pulse

• The first pulse is partially recoverable
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Timing Estimation in overlapping case
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Energy estimation in overlapping case
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Conclusion

• We performed frequency domain multiplexing of two EJ-309 fast organic scintillator
detectors with

• 4 keV increase in the energy precision

• 100 ps increase in the timing precision

• Pulse-shape discrimination using recovered pulse resulted in a small decrease in the figure
of merit

• Most significant loss in precision was observed in the energy estimation of the second
pulse in the double occupancy case

• We are working to implement frequency domain multiplexing with
• EJ-204 scintillator bars

• SiPM readouts

• DRS4 digitizer

• Using simulated annealing, we are currently working to find an optimal multiplexing
pattern for the SVSC channels to minimize double occupancy
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Prototype Monolithic Imager

H12700
MAPMTs

0 Sandia National Laboratories

Scintillator and
PMTs

4 CAEN V1742 32-
channel, 5 GSs-
1, 12 bit digitizers

Dell 7920 16-core
workstation + CAEN

A3818 optical
interface

MEM,01,,MOM MMO,OlMOM
MEM,AIMPIMM EMMIECIMMEM
MMI,CULMEM



Crosstalk issues

• Possible mitigations:
• Reduce crosstalk by changing voltage

divider
• Handle crosstalk in analysis using SIRT

• Note crosstalk is reminiscent of
observations on Planacon, LAPPD.

• High simultaneous occupancy regime
is not common use case for these
detectors.

• Probably requires work at the
hardware level to truly resolve.
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• Laser diffused
over LAPPD face

• Grey strips have
bad cables

• Signals inverted
• Laser level

increased to avg
10-20 photons

• Wow, who
knows what's
going on there
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Two directions for next monolithic prototype

• Incremental changes
• Continue with multi-anode PM

• Possibly H12700 -> Planacon

• Continue with SIRT or related
methods to disentangle crosstalk

• Electronics move to more compact
implementation: SCEMA + SMACC

• Wholesale shift
• Switch to SiPMs on the grounds
that they are fundamentally more
independent and crosstalk should
be avoidable

• Move toward high channel count
analog electronics, i.e. PetSYS
ecosystem to support small pixels
with low occupancy

• Unknown issues TBD

Make decision based on ongoing studies on

current monolithic prototype as well as SCEMA

testing and PetSYS evaluation.
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First OS Prototype @UH:
UNIVERSITY
of HAWAIT Gmbh

MAN,. iwasi

r r ,,,,, 111

BERKELEY LAB

Summary:
• Photodetector: SensL J-series 6x6mm using FOUT
• Readout electronics and trigger: i GB/s 12-bit from UH
• Scintillator: 5x5x2coo mm EJ-204 bars, Teflon-wrapped
• Algorithms: BLUE of two z-measurements:
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Enclosure side wall

Lattice support for 64
bars

SiPM array support

Adapter card

EJ-204 wrapped in
Teflon

Lattice support spacer
around threaded rod

Enclosure bottom

NC STATE
UNIVERSITY
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Next OS prototype

■ Identify and reduce electronic crosstalk in SiPM/readout

■ Understand levels of optical crosstalk in current prototype

■ Possible upgrade paths:
■ Scintillator: PSD-capable material. O-glass could provide EJ-204

performance plus PSD, but fabrication difficult. Consider
advanced optical reflectors.

■ Photodetector: Hamamatsu 513361-605o MPPC could provide
better performance, but not currently a critical limitation.

■ Electronics: Evaluate PetSYS TOFPET2-based analog system. No
change or DRS4-based digitization also options.

■ Underlying this is using the simulation-reconstruction-
imaging software that has been developed to understand the
impact of each possible upgrade.
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Future summary

• Work is proceeding on multiple fronts:
• Short-term develop, prototype, evaluate, iterate:

Monolithic concept

Optically segmented concept

• Longer-term efforts, incorporate outcomes in 1-3 yrs
Component test & evaluation

— Tranloc material, PetSYS analog electronics, scintillator properties

Technology development
— Scintillators, LAPPD, SCEMA, algorithms

• Work toward hardware demonstrations, peer-
reviewed publications, and conference presentations.

• Downselect approach in FY2o if appropriate.

• Multi-anode vacuum photodetectors need to be
abandoned for many-photon regime?

• Consider high-channel-count analog electronics, or
integrated sensor/front end chips?

Prototyping
Monolithic Opt. Segmented

Components
Scintillators Photodetectors

Electronics Algorithms
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