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2 I Outline

Motivation

■Voltage Smoothing Techniques
■ Technique I: Active power ramp rate control by
monitoring PV inverter power output

Technique II: Proposed algorithm of PQ power
injection control by monitoring voltage

System models for verification
Results on the IEEE 4-bus test system

Results on EPRI distribution test circuit 5



3 I Motivation

• Increasing photovoltaic (PV) integration and weather conditions could vary
PV active power injection and cause voltage fluctuations.

Load tap changers (LTC) at transformer substations can mitigate voltage
variations; however, LTC response is relatively slow and thus is not suitable for
the ramp rate and frequency of fluctuations induced by PV.
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[1] P. Siratarnsophon, K. W. Lao, D. Rosewater, S. Santoso, 'A Voltage Smoothing Algorithm using
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4 I Motivation

Battery Energy Storage (ES) can be controlled to dampen power fluctuations,
prolonging LTC life, and preventing voltage violations.

Problem Statement: design a controller to reduce the impact of PV on
distribution system voltage and LTC life

We will first evacuate the

effectiveness of the

controller on a simple

IEEE 4 bus test system

Then we will evaluate

them in a full EPRI

distribution circuit model

[1] P. Siratarnsophon, K. W. Lao, D. Rosewater, S. Santoso, 'A Voltage Smoothing Algorithm using

Energy Storage PQ Control in PV-integrated Power Grid" IEEE Power Systems Letters, 2018



5 1 Voltage Smoothing Techniques

r Technique I monitors PV inverter active power output to control active power
ramp rate [4].
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6 1 Voltage Smoothing Techniques

r Technique II is the proposed active and reactive power injection control that
works by monitoring local bus voltage which the inverter is connected to. This
effectively combines PV smoothing and volt-var.
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7 System models for verification

1

IEEE 4-bus test system
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8 1 System models for verification

- Results on the IEEE 4-bus test system (Scenario 1)
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9 1 System models for verification

- Results on the IEEE 4-bus test system (Scenario 1)

Technique I

Technique II
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10 I System models for verification

- Results on the IEEE 4-bus test system

Summary of Verification Results

Scenario 1
Control Tap

changes
Pmax Qmax SOCmax SOCmin, RM SD

No Control
Tech. I
Tech. II

201
27
13

0
320
197

0
0
193

60
74.27
72.19

60
39.58
44.68

0.101 kV
0.068 kV
0.029 kV

Scenario 2
Control Tap

changes
Pmax Qmax SOCmax SOCmin RMSD

No Control
Tech. I
Tech. II

245
35
13

0
320
231

0
0
219

60
74.26
72.92

60
39.58
43.69

0.121 kV
0.074 kV
0.031 kV



Results on EPRI distribution test circuit 5
(Preliminary results)

■



12 System models for verification

• EPRI Test Circuit 5

Modifications

Added 688 (10kW) PV units on
unique random busses (roughly
100% penetration)

Added 344 (10kW, 10kWh) ES
units on a subset of the PV busses

Increased the resistance of the
substation transformer 10x

°Added a LTC on the substation
transformer regulating bus
x 62302.2
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13 System models for verification

• EPRI Test Circuit 5

Modifications
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14 I System models for verification

• Results on EPRI Test Circuit 5
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1 5 System models for verification

Results on EPRI Test Circuit 5
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16 I System models for verification

• Results on EPRI Test Circuit 5

Control Tap Changes % Reduction

No Control ABC = 111 103 104

Tech. 1 ABC = 107 101 102 2.5%

Tech. 11 ABC = 31 36 30 69.5%

T
a
b
 N
u
m
b
e
r
 

T
a
b
 N
u
m
b
e
r
 

T
a
b
 N
u
m
b
e
r
 

10

5

0

-5

-10

10

5

0

5

-10

10

5

0

-5

-10
0

Tab Number at LTC without BESS control

L

__J

L

5 10 15

Tab Number at LTC with BESS control

20

L
L

5 10 15 20

Time (hour)

Tab Number at LTC with BESS control

L-1

A /A i /A IVA V

MY I

I 

5 10

Time (hour)

15

3-Phase LTC Action



17 I Conclusions

• Renewables do not (inherently) cause problems on the distribution system

• When they do cause problems, it often makes more sense to address the problems
directly rather than focusing on the renewable generators

- Voltage power quality and the frequency of tap changes can be addressed more
efficiently and effectively by a controller that focuses on smoothing voltage

Storage can effectively improve power quality and LCT life in distribution systems
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