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2 I Risk and modeling of FCEV in tunnels

Objective: Provide the necessary information to authorities in the Northeast
Corridor to determine if FCEVs will be permitted in tunnels

Comprehensive Risk Analysis

. What could happen, what are the consequences if it does happen, what are the chances of it
happening

. Attempt to quantify the probabilities of each scenario

Evaluation of the Consequences, if uncertain

. Modeling and analysis of a Thermally Activated Pressure Relief Device (TPRD) release

Listen to concerns of Authorities Having Jurisdiction (AHJ)

. Investigate and address each concern
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Tunnels safety study risk analysis
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Ehrhart, Brian D., Brooks, Dusty M., Muna, Alice B.,
LaFleur, Chris, "Risk Assessment of Hydrogen Fuel Cell
Vehicles in Tunnels," Accepted by Fire Technology
Journal.

Event tree created to analyze the
risk of an accident with a
hydrogen fuel cell vehicle

The event tree illustrates the
chronological sequence of events
involving the success and/or
failures of system components

Risk analysis used to identify possible scenarios and focus
CFD modeling efforts on scenarios with highest risk



Uncertainty around scenario probabilities- examples

Probability that a fire occurs given
severe accident
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• Based on 5 experiments where no release
occurred

• Beta distribution assumed along with
Jeffrey's uninformed prior

Calculation of uncertainty allows a more complete range of answers to be
characterized



Uncertainty around scenario probabilities
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Scenario G with the potential for increased consequence due to hydrogen will
be analyzed further and modeled.



6  Modeling Multiple Tunnels

TPRD release scenario (G)
o Gasoline from other vehicle ignites, external fire engulfs FCEV, activates the
TPRD

o H2 immediately ignited and a jet fire results aimed toward tunnel ceiling

O A 125-liter, 70 MPA tank with a TPRD orifice of 2.25 mm is analyzed with a
blowdown of approximately 300 sec

Analyzed CANA, Sumner & Ted Williams Tunnels to quantify:
• Distortion of steel frames supporting concrete panels

O Impact on capacity of epoxy anchors under anticipated heat

O Potential for spalling of concrete tunnel roof slab and ceiling
panels
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7 Accomplishments: CANA Tunnel CFD, No Ventilation
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Accomplishments: CANA Tunnel H2 Jet Flame CFD Model —
Gas Temperature With Ventilation

Time = 0.00 sec



9 Accomplishments: CANA Tunnel CFD with Ventilation

Flame does not reach ceiling, but hot gas mixture does.

The separation of the jet at the ceiling interface is caused by a counter-
rotating vortex pair generated by the jet in crossflow
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10 Accomplishments:Tunnel Results

oPotential for explosive spalling:
o Modeling showed that conditions are present that may result in localized
spalling in the area where the hydrogen jet flame impinges the ceiling

o Steel deflection is minimal
o Note that the hydrogen heat release rate was over-predicted, so the
temperature observed should be lower

oEffect of heat on the epoxy:
o Maximum temperature at epoxy/bolt location is ambient, well below failure
point of 90 °C, even under the worst case, conservative condition

oEffect of heat on the steel support structure:
o Maximum temperature of steel hangers exposed directly to the hydrogen jet
flame is 706 °C after 5 minutes of impingement for the case with no
ventilation

oAnalysis focused on short duration H2 jet flame. Hydrocarbon fuel/vehicle fire
would be a longer duration and resulting heat was not analyzed and may result in
spoiling concrete
( Only the hydrogen fire was analyzed because it posed a new hazard



Questions? Feedback?

Brian Ehrhart bdehrha@sandia.gov 

Alice Muna amuna@sandia.gov 



Uncertainty around scenario probabilities

Probability of injury given an accident
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Uncertainty around scenario probabilities

Uncertainty of TPRD failure to operate
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• Bayesian approach with informed prior

• Choice of an informed prior leads to a lower

estimated probability of failure, but overall
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• Due to wide range of ignition probability

values, a uniform distribution between the

lowest and highest values was chosen



Velocity of H 2 Tank Blowdown

Valve orifice diameter was adjusted due to mesh coi

• Actual valve diameter 2.25 mm —> CFD orifice diamet

• Same mass flow rate by adjusting velocity under-predici
the ceiling

Protective layer

Gas outlet solenoid
(impact resistance)

In-tank
pressure
regulator

Pressure relief device
In-tank gas temperature sensor

https://cafcp.org/emergency-responders

Carbon composite shell
(mechanical strength)

High density polymer liner
(gas diffusion barrier)

Foam dome
(impact resistance)

• Modeled: 700 m/s over 5 minutes

• Will over-predict amount of mass released, but captures momentum and flame length

• Heat release rate is also over-predicted,
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Important Conservative Assumptions

80

Only one fuel can be burned at a time in the Rtiffib
O Simulations include only hydrogen jet flame 40
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Maximum concrete Temperature vs.
acirr

Accomplishments: Heat Transfer Model Predicts
16 Temperatures Throughout Concrete Panels
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It is much less likely to have explosive spalling when
tunnel ventilation is operating



Accomplishments: Effects on Structural
17 I Elements Predicted
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TW Tunnel

Maximum concrete Temperature vs. Temperature across 316 SS hanger
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