IDC Re-engineering -

GMS Processing Service Architecture

SAND2019- 7105PE

GMS

T ‘ |||II‘III
Geophysical

Monitoring

System
PRESENTED BY ks)
J. Mark Harris |

The views expressed here do not necessarily reflect the views of

the Um'te'ctih States Govl:fnme{\t,‘ the United States Department of
. . P . Energy, Nati Nuc Security Administration, the
Technical Meeting on SHI Software Engineering at the IDC Unitsd States Department of State, the Alr Force. Tachnica
Applications Center, or Sandia National Laboratories.
1-2 July 2019

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-XXXX C

2 | Topics

Control Based Architecture
o Control Application Architecture Responsibilities
o Plugin Architecture Responsibilities

Control Application Sequences
o Startup

° Processing Request

Plugin Design

Control Based Architecture

Control Based Architecture

Primary concept: Implement Monitoring Business Logic

Control Applications
o Entry point for automatic processing business logic

o Filtering, beaming, FK, detection, association, location, magnitude, etc.
o Accessed from automatic processing sequences and Ul

> Independent of other control applications
o Support novel processing sequences
o Develop and replace in insolation

o Relocatable to multiple environments (testbeds, data center ops, field laptops, etc.)
° Intentionally dependent on the conventions and technologies of the broader GMS ecosystem

o Expose service routes, interact with data persistence mechanism, application monitoring, ...

Plugins
° Implement algorithms

o Extension point for new algorithm implementations
o Loosely dependent on the broader GMS ecosystem

Control Application Architecture Responsibilities

Provide access to common business logic via external interfaces
o Automatic processing interfaces
o Streaming: Consume data objects available to process
o Descriptor: Consume descriptions of the data objects available to process; load data from OSD

o |Interactive: tailored to Ul needs

Data Access and Persistence via OSD
° Load data based on descriptors

° Load additional data required to serve processing request
o Store processing results and create descriptors

Plugin Registry Management
o Discover and register plugins at startup

o Select and invoke correct plugins for each processing request

Configuration
° Load and cache at startup; receive updates at runtime
o Resolve processing parameters during each processing request

Implement general application responsibilities with project standard technologies and frameworks
o Logging, configuration, process monitoring, external service communication, etc. (see Architecture Overview)
o Consume and produce COIl data objects

6 | Plugin Architecture Responsibilities

Address GMS Project Principles
o Extensibility
° Integrate new algorithms
> |solate algorithm implementations from GMS libraries, frameworks, etc.
o Path to implement algorithms in languages other than Java
o Scalability
o Control Applications deployed in different GMS environments (laptop through datacenter)
o Same applications operate in each environment, possibly at reduced functionality
o Access algorithm implementations appropriate to those environments
o e.g. 3D earth models and waveform correlation may not be feasible on a laptop
o Different algorithm deployments (service vs. in-memory) based on client application’s requirements
° Maintainability

o Access related algorithms through common interfaces from the same Control application logic

Design Goals
° Dynamically discoverable at runtime

° |solate algorithm logic from GMS control applications, processing flows, and OSD interactions.

o Simple interfaces reimplemented by a variety of algorithms from the same family.

Control Application Runtime Sequences
Startup

s I Sequence: Control Application Startup (1/6)

T

A 4 A 4 A 4

Streami ngq Interactive } Descri ptoq
| API L A}\PI | API
/Control N
Application

=
Config Data
Store

< 4
.

9 I Sequence: Control Application Startup (2/6)

T

1. Load Configuration
* Load system configuration
v » Load processing configuration

A 4
Streaminq Interactive Descriptoq parameterizing Control Application’s
business logic:
API API API * Which plugins to call
7\ » Configuration for those plugins
Control * Other business logic
Application

e
Config Data

Store

0 | Sequence: Control Application Startup (3/6)

|

2. Discover plugins
» Uses classpath scanning
4 v * Currently with Java ServicelLoader
Streamingq Interactive Descriptoq * Have also used Spring and Java Modules
API API API Build tool (Gradle) links Plugins to Control
N * No code-level dependencies
Control \
Application

Config Data
Store

Sequence: Control Application Startup (4/6)

|

3 Register plugins
Initialize and configure discovered plugins

4 v » Put discovered plugins in a registry
Streaming Interactive Descriptor | |+ Registryindexes plugins by name and
version
API API API
N
@trol \
Application

>
Config Data

Store

12

HTP) |

il Streaming
API

_

]

u

“HTTP)

mre) |

[Interactive
API
A

\

1

 Descri ptor
API

\

]

Sequence: Control Application Startup (5/6)

4. General application startup

» Configure log output level
 Initialize local caches from OSD
» Etc.

Control
Application

<

N

=
Config Data

Store

4. Configure logging,
populate local cache,
etc.

Sequence: Control Application Startup (6/6)

13

T 5. Configure service routes

5. Configure Service Routes
» Configure embedded webserver (ports,

L 4 v thread pools, error handlers)
Streaming Interactive Descriptor * Expose service routes (URLs)
API AP| AP|
/
@trol \
Application

=
Config Data

Store

Control Application Runtime Sequences
Processing Request

15 I Sequence: Control Serves Processing Request (1/13)

T

A 4 A 4 A 4

H v [HTTP_ _HTTP] |

Streaming Interactive (Descri ptor

| API API | API
Control

Application

6 I Sequence: Control Serves Processing Request (2/13)

Oa. Receive processing request T

API

A

y

Streamingq

Interactive
API
A

Descripto
API

.}

Control
Application

Oa. Receive Processing Request

* Request arrives to one of several external
facing service or Java interfaces.

» Each interface is to the same processing
logic but each accepts different parameter
representations.

» External interfaces provide flexibility in
how this logic is invoked.

.

17 | Sequence: Control Serves Processing Request (3/13)

/‘\ Ob. Resolve Descriptors

« Use OSD to query for processing parameter
data objects using processing parameter
descriptors.

, H'

re Interactive
API API
/

\

Descriptor Ob. Resolve
API descriptors

\

Control
Application

18 I Sequence: Control Serves Processing Request (4/1 3)

T Oc. Transform Processing Request
» If necessary, transform or enhance
parameters to match interface provided by
the common business logic.
y * May batch requests (TBD)

Descriptor
API

Oc. Transform request

A 4

Streaming
API

Interactive
API
A

Control
Application

19 I Sequence: Control Serves Processing Request (5/13)

T 0d. Delegate Processing
* Interfaces invoke common business logic.

‘ Descriptor
API

A 4

Streaming
API

Interactive
API

Control

Application| * 0SD

20 I Sequence: Control Serves Processing Request (6/13)

A 4

y

HTTP] .

u

“HTTP)

A 4

y

HTTP) .

API

_

i Streaming

] [Interactive

J

\

API

([Descriptor

}

1. Determine processing parameters

» Use the configuration client and
information from the processing request to
resolve processing parameters.

* Provides station-, time-, phase-, workflow
step-, etc., based processing parameters
to the business logic.

Control
Application

API

—_ 1. Determine processing parameters

Sequence: Control Serves Processing Request (7/13)

A 4 A 4

HTTP) | _HTTP) HTP) |

2 Load Additional Data
* Query OSD for additional data needed to
serve the processing request.

» Additional waveforms, station reference
information, related signal detections or

i Streaming} [Interactive J ([Descriptor} events, etc.

| API A:PI L API
Control
Application

_ 2. Load \addﬁitiogal/ dat _—

~

| w

22

HTP) |

i Streaming
API

_

HrP) |

Sequence: Control Serves Processing Request (8/13)

3a. Control Logic

J |

Interactive
API
A

J

 Descri ptor
API

\

» Execute business logic located in the
Control Application.

* Minor algorithm logic

» Data transforms required to invoke plugins

Control
Application

Sequence: Control Serves Processing Request (9/13)

A 4

3b Select Plugin(s)
Determine which plugins to call

» Based on resolved configuration

» Each Control application decides how to
call plugins.

with results of other plugins, etc.

} * May call plugins in parallel, call one plugin

HTTP | | _HTTP | HTTP]
(. . (y
Streaming Interactive Descriptor
| API API . API
Control
Application

3b. Select plugin(s)

N

| w

24

Sequence: Control Serves Processing Request (10/13)

|

A

y

Streamingq

API

Interactive

Descriptor
API

3c. Call Plugin(s)
+ Call plugins and collect their results

Control
Application

API
N

Sequence: Control Serves Processing Request (11/13)

T 3a. Control Logic
» Execute any additional business logic
v v located in the Control Application.
: ‘ f * Minor algorithm logic.
> HWM — : HWN - HW » Data transforms required to translate
Streaming] [Interactive J DescrlptorL plugin results.
| AP AP . AP
@trol \
Application
2l Data
Store

26 I Sequence: Control Serves Processing Request (12/13)

T 4. Store Results
» Store processing results if necessary.

Streaming
API
Control
Application

Interactive
API
=

Descriptor
API

4, Store results

[

27 I Sequence: Control Serves Processing Request (13/13)

T 5. Return results

A 4

A 4

Streaming Interactive Descriptor
API API API
A
Control
Application

5. Return Results

» Business Logic returns processing results to

the external interface

» External interface may transform results

(e.g. downselect fields from processing
results, create descriptors)

« External interface may serialize results

» External interface returns results to client

.

Plugin Design

29 | Plugin Design

Plugin Logic

N

[Plugin Interface J

/

\

Declares operations for:
1. General plugin information (name and version)
2. Plugin initialization
3. Processing operation(s) for the algorithm family

[Plugin Accessor

\

Provides a realization of the plugin interface by
1. Delegating operation implementations to the plugin class (for in-memory
plugins)
2. Invoking a remote plugin service (for remote plugins)

[Plu

gin

Prepares data for algorithm

1. Extract necessary fields from COIl data objects

2. Transform fields into representations used by the algorithm
a) Basic signal processing (merge adjacent waveforms, demean,

normalize, etc.)

b) Convert values from absolute times to sample counts
ey ELC.

3. Algorithm invocation logic

Postprocesses algorithm results
1. Transform fields into COIl representations (e.g. convert from sample counts
to absolute times, etc.)
2. Associate metadata with algorithm results
3. Construct COI objects (if required by plugin interface)

y

[Algorithm

Performs scientific calculations
Ideally no dependencies on other GMS software (frameworks, libraries, COI
classes, etc.)

N —

30

Plugin Deployment

GMS has two primary plugin deployment schemes
o All current plugins are in-memory libraries

o Designed to support plugins deployed as services

Packaging the same plugin logic in both schemes requires implementing a Plugin Accessor for each deployment.

In-memory Plugin

Plugin Component (JAR)

[Plugin Interface |

[Plugin Accessor]‘/

Custom accessor
>z for each
deployment

Remote Plugin
4 Plugin Access Library (JAR) N

| Plugin Interface |

Deployments
share plugin logic

Algorithm

[Plugin Accessor |
(U T 4

/ PluginVService \

[_Service Controller |

Example Plugin Implementation — Signal Detector STA/LTA Plugin

In-memory plugin

See /gms/core/signal-detection in GMS software release

Plugin Interface

[SignalDetectorPlugin

N

getName and getVersion
initialize(configuration)
detectSignals(waveform[]) : Instant[]

Plugin Accessor

Component

[StalLtaPowerDetector

N

Implements getName and getVersion
Initialize() and detectSignals() implementations delegate to
StalLtaPowerDetectorPlugin

N = WDN =

Plugin

A4

Plugin

[StalLtaPowerDetector

N

detectSignals implementation:

a) Condition waveforms
i. Interpolate over gaps
ii. Merge adjacent waveforms
iii. Convert STA/LTA window parameters from time units to sample counts
iv. Extract double[] from waveforms

b) Invoke STA/LTA algorithm

c) Convert algorithm results from triggered sample indices to absolute times

Algorithm

A4

[

Algorithm

Implements STA/LTA transform and trigger on a double([]
Returns triggers as sample indices

N =

32 | Alternate Language Plugins — Notional (1/2)

GMS plugin architecture supports implementing plugins in non-Java languages

Integrating the plugin requires minimal Java (a Plugin Accessor)

Java
A

[Plugin Interface J

[Plugin Accessor J

. Use Java to implement Plugin Accessor to call a

Plugin implementation in an alternate language

{ Plugin J

Alternate Language
A

[Algorithm]

w

. Consume and produce COI data objects

a) Use a COl implementation in the plugin
language

b) Deserialize necessary fields into plugin
specific data objects

Implement Plugin pre- and post-processing logic

Implement plugin Algorithm

/Plugin Component (JAR)\

Plugin Interface

\

J/

{ N

Plugin Accessor

13 | Alternate Language Plugins — Notional (2/2)

/ Plugin Access Library\
(JAR)

[Plugin Interface]

4

s
S &

[Plugin Accessor J

\ ’ 4

Vv

/ Plugin \

Implementation (non-
JVM language)

[Plugin .

/ \

N

\[Algorithm] /

JNI, HTTP, gRPC, etc.

Plugin logic (e.g.

COl object
manipulations;
algorithm

. invocation logic)

can also be
implemented in
Java and
packaged in the
JAR.

34 | Complication: Plugins calling Plugins

A GMS plugin may call other GMS plugins, e.g.
o Locator plugin calling Feature Prediction plugin

o Feature Prediction plugin calling Earth Model plugin

.

r Plugin Interface

~

J

\

e

\\

\

Plugin Accessor

4\ J

/

.] ‘ Plugin
{Plugm RegistryJ

~

~

[Algorithm]

calls ,

1
1
A4

i

Structure

° Plugin contains a Plugin Registry
o Discovers nested plugins
> Registers nested plugins
> Selects nested plugins to use during each processing request

Calling Nested Plugins

o Prefer for Plugin to make calls to nested plugins to
isolate Algorithm from GMS libraries

> Algorithm calls nested plugins if necessary
(performance; avoid complicated interactions
between Plugin and Algorithm, etc.)

35

END

