
IDC Re-engineering -
GMS Processing Service Architecture

GMS
11111111

Geophysical
Monitoring

System

PRESENTED BY

J. Mark Harris

Technical Meeting on SHI Software Engineering at the IDC

1-2 July 2019

The views expressed here do not necessarily reflect the views of
the United States Government, the United States Department of
Energy, the National Nuclear Security Administration, the
United States Department of State, the Air Force Technical
Applications Center, or Sandia National Laboratories.

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-XXXX C

SAND2019-7105PE

2 Topics

Control Based Architecture

Control Application Architecture Responsibilities

Plugin Architecture Responsibilities

Control Application Sequences

Startup

Processing Request

Plugin Design

Control Based Architecture

4 Control Based Architecture

Primary concept: Implement Monitoring Business Logic

Control Applications
Entry point for automatic processing business logic

Filtering, beaming, FK, detection, association, location, magnitude, etc.

Accessed from automatic processing sequences and Ul

Independent of other control applications
Support novel processing sequences

Develop and replace in insolation

Relocatable to multiple environments (testbeds, data center ops, field laptops, etc.)

Intentionally dependent on the conventions and technologies of the broader GMS ecosystem
Expose service routes, interact with data persistence mechanism, application monitoring, ...

Plugins
Implement algorithms

Extension point for new algorithm implementations
Loosely dependent on the broader GMS ecosystem

5 Control Application Architecture Responsibilities

Provide access to common business logic via external interfaces
Automatic processing interfaces

Streaming: Consume data objects available to process

Descriptor: Consume descriptions of the data objects available to process; load data from OSD

Interactive: tailored to Ul needs

Data Access and Persistence via OSD
Load data based on descriptors

. Load additional data required to serve processing request

. Store processing results and create descriptors

Plugin Registry Management
. Discover and register plugins at startup

. Select and invoke correct plugins for each processing request

Configuration
Load and cache at startup; receive updates at runtime

Resolve processing parameters during each processing request

Implement general application responsibilities with project standard technologies and frameworks
. Logging, configuration, process monitoring, external service communication, etc. (see Architecture Overview)

. Consume and produce COI data objects

6 Plugin Architecture Responsibilities

Address GMS Project Principles
Extensibility

Integrate new algorithms

Isolate algorithm implementations from GMS libraries, frameworks, etc.

Path to implement algorithms in languages other than Java

Scalability
Control Applications deployed in different GMS environments (laptop through datacenter)

. Same applications operate in each environment, possibly at reduced functionality

. Access algorithm implementations appropriate to those environments

- e.g. 3D earth models and waveform correlation may not be feasible on a laptop

Different algorithm deployments (service vs. in-memory) based on client application's requirements

Maintainability
Access related algorithms through common interfaces from the same Control application logic

Design Goals
Dynamically discoverable at runtime

Isolate algorithm logic from GMS control applications, processing flows, and OSD interactions.

Simple interfaces reimplemented by a variety of algorithms from the same family.

Control Application Runtime Sequences
Startup

8 I Sequence: Control Application Startup (1 /6)

I

i f
: HTTP 1
[Streaming

API

Control
Application

HTTP
,

Interactive
API

Descriptor
API

l
Plugin Registry

Business Logic

Config 4______
Client

J
f-

Plugin

9 Sequence: Control Application Startup (2/6)

1

i f
' HTTP),
r Streaming

API

Control
Application

HTTP
,

Interactive
API

HTTP) I ,
Descriptor

API

1

l
Plugin Registry 1

1Business Logic
\

_J

1. Load configuration

--.1

Config ji
Cliental

1. Load Configuration
• Load system configuration
• Load processing configuration

parameterizing Control Application's
business logic:

• Which plugins to call
• Configuration for those plugins
• Other business logic

Config Data
Store

,
F Plugin

10 Sequence: Control Application Startup (3/6)

1

i
' HTTP), c 1

Streaming
API

Control
Application

HTTP
Interactive

API /

HTTP) I ,
Descriptor

API

1

l
Plugin Registry 1Bu

siness Logic
\

J I Config
Client

 /

2. Discover plugins

2. Discover plugins
• Uses classpath scanning
• Currently with Java ServiceLoader
• Have also used Spring and Java Modules

• Build tool (Gradle) links Plugins to Control]
• No code-level dependencies

Config Data
Store

c

Plugin
f-

11 Sequence: Control Application Startup (4/6)

I

i
: HTTP)
[Streaming

API

Control
Application

•

, HTTP
[Interactive]

API

I
Descriptor

API

3. Register plugins

L Plugin Registry 1
1Business Logic

\

_J I Config
Client

3. Register plugins
• Initialize and configure discovered plug7ns
• Put discovered plugins in a registry

]

• Registry indexes plugins by name and
version

f-
Plugin

12 Sequence: Control Application Startup (5/6)

I

i
' HTTP), c 1

Streaming
API

Control
Application

HTTP
Interactive

API /

HTTP) I
1

Descriptor
API

l
Plugin Registry 1

1Business Logic
\

1

4. Configure logging,
populate local cache,
etc.

I Config
Client

4. General application startup
• Configure log output level
• Initialize local caches from OSD
• Etc.

J c
C-

Config Data
Store

Plugin

13 Sequence: Control Application Startup (6/6)

5. Configure service routes

HTTP
[Streaming Interactive Descriptor

API API API

HTTP HTTP

Control
Application

Plugin Registry 6Bu
siness Logic

4•1_ Config
Client

5. Configure Service Routes
• Configure embedded webserver (ports,

thread pools, error handlers)
• Expose service routes (URLs)

Config Data
Store

Plugin

Control Application Runtime Sequences
Processing Request

15 I Sequence: Control Serves Processing Request (1/13)

i
: HTTP 1
[Streaming

API

r
•

HTTP
,

Interactive 1
API

I
Descriptor

API

1

Control
Application

l
Plugin Registry

Business Logic i

Config
Client

OSD

,_ r-
Plugin

.--.
Data
Store

16 Sequence: Control Serves Processing Request (2/ 1 3)

Oa. Receive processing request

HTTP
Streaming

API

Control
Application

HTTP HTTP I
Interactive Descriptor

API API

Plugin Registry 1
1Business Logic

,•------------

_J

Oa. Receive Processing Request

•
I

• Request arrives to one of several external

Each interface is to the same processing
facing service or Java interfaces.

1

logic but each accepts different parameter
representations.

• External interfaces provide flexibility in
how this logic is invoked.

I

Config
Client

/

OSD ..-0.
Data
Store

,--
Plugin

-1

I

I

17 Sequence: Control Serves Processing Request (3/13)
A

HTTP
Streaming

API

HTTP
Interactive

API LDescriptor,API i

1
HTTP 1

Ob. Resolve Descriptors
• Use OSD to query for processing parameter

data objects using processing parameter
descriptors.

Control
Application

[Plugin Registry 1
1Business Logic

--i

_J
Config
Client

y

Ob. Resolve
descriptors

---. OSD Data
Store

,_ r Plugin

18 Sequence: Control Serves Processing Request (4/ I 3)

HTTP

Oc. Transform request

HTTP HTTP
[Streaming] r Interactive Descriptor

API API API

Oc. Transform Processing Request
• If necessary, transform or enhance

parameters to match interface provided by
the common business logic.

• May batch requests (TBD)

Control
Application

Plugin Registry 1
1Business Logic

Config
Client

OSD

Plugin

Data
Store

19 I Sequence: Control Serves Processing Request (5/13)

,
HTTP

,

Streaming
API

Control
Application

Od. Delegate
processing

r
HTTP

,

Interactive
API

HTTP) I
1

I—
Ocl. Delegate Processing

1 • Interfaces invoke common business logic.

Descriptor
API ____

,-÷
Plugin Registry

Business Logic

I Config
Client

OSD .—. Data
Store

,
,_ I-

Plugin

20 Sequence: Control Serves Processing Request (6/13)
A

HTTP
r Streaming

API

Control
Application

HTTP
Interactive

API

HTTP
Descriptor

API

Plugin Registry 1
1Business Logic

1. Determine processing parameters
• Use the configuration client and

information from the processing request to
resolve processing parameters.

• Provides station-, time-, phase-, workflow
step-, etc., based processing parameters
to the business logic.

OSD

1. Determine processing parameters

Config
Client

F Plugi n

Data
Store

21 I Sequence: Control Serves Processing Request (7/13)

1

' HTTP 1,
r Streaming

API

Control
Application

r
1

HTTP I HTTP
Interactive

API

I
Descriptor

API

,-+
l
Plugin Registry

2. Load additional dat

Business Logic 1

I

2. Load Additional Data
• Query OSD for additional data needed to

serve the processing request.
• Additional waveforms, station reference

information, related signal detections or
events, etc.

Config
Client

OSD

r

,_ I-
Plugin

.--.
Data
Store

22 Sequence: Control Serves Processing Request (8/ I 3)

i
: HTTP)
[Streaming

API

HTTP
Interactive

API

HTTP i
Descriptor

API

3a. Control Logic
• Execute business logic located in the

Control Application.
• Minor algorithm logic
• Data transforms required to invoke plugins

1

Control
Application

,-+
l
Plugin Registry

Business Logic '

3a. Control logic

Config
Client

/

--* OSD . . Data
Store

F Plugin

23 Sequence: Control Serves Processing Request (9/ 1 3)

i
: HTTP)
[Streaming

API

HTTP
Interactive

API

HTTP I
Descriptor

API

3b. Select Plugin(s)
• Determine which plugins to call
• Based on resolved configuration
• Each Control application decides how to

call plugins.
• May call plugins in parallel, call one plugin

with results of other plugins, etc.

Control
Application

3b. Select plugin(s)

L Plugin Registry h
iBusiness Logic

o------------

_J

m

Config
Client

/

--* OSD . . Data
Store

F Plugin

24 Sequence: Control Serves Processing Request (10/13)

I

i
A

' HTTP),
r Streaming

API

Control
Application

HTTP
c

I nteractive
'N

API

1
HTTP) ,
Descriptor

API ,

l
Plugin Registry 1Bu

siness Logic
,1

i

3c. Call Plugin(s)
• Call plugins and collect their results

Config
Client

3c. Call plugin(s)

OSD

c
C-

Plugin

.--.
Data
Store

25 Sequence: Control Serves Processing Request (I 1/13)

i
: HTTP)
[Streaming

API

HTTP
,

Interactive
API

3a. Control Logic
• Execute any additional business logic

located in the Control Application.
• Minor algorithm logic.
• Data transforms required to translate

Descriptor plugin results.

1

Control
Application

,-+
l
Plugin Registry

Business Logic '

3a. Control logic

Config
Client

/

,---. OSD . . Data
Store

F Plugin

26 Sequence: Control Serves Processing Request (12/ 1 3)
A

,
HTTP

,

Streaming
API

Control
Application

HTTP
,

Interactive
API

1
HTTP) I
Descriptor

API ,

Plugin Registry 1
1Business Logic

•1

_J
Config
Client

4. Store Results
• Store processing results if necessary.

OSD

4. Store results

,
F Plugin

.--.
Data
Store

27 Sequence: Control Serves Processing Request (1 3/1 3)

5. Return results

: HTTP 1
[Streaming

API

HTTP
Interactive

API
1

Descriptor
API

_I
Control
Application

Plugin Registry

K

Business Logic

1

f--------

5. Return Results
• Business Logic returns processing results to

the external interface
• External interface may transform results

(e.g. downselect fields from processing
results, create descriptors)

• External interface may serialize results
• External interface returns results to client

-17

Config
Client

/"-÷

e
OSD

f-

Plugin

4 ►
,----
s..._

Data
Store

29 Plugin Design

Plugin Interface

Plugin Accessor

Plugin

Algorithm

Declares operations for:
1. General plugin information (name and version)
2. Plugin initialization
3. Processing operation(s) for the algorithm family

Provides a realization of the plugin interface by
1. Delegating operation implementations to the plugin class (for in-memory

plugins)
2. Invoking a remote plugin service (for remote plugins)

Prepares data for algorithm
1. Extract necessary fields from COI data objects
2. Transform fields into representations used by the algorithm

a) Basic signal processing (merge adjacent waveforms, demean,
normalize, etc.)

b) Convert values from absolute times to sample counts
c) Etc.

3. Algorithm invocation logic

Postprocesses algorithm results
1. Transform fields into COI representations (e.g. convert from sample counts

to absolute times, etc.)
2. Associate metadata with algorithm results
3. Construct COI objects (if required by plugin interface)

1. Performs scientific calculations
2. Ideally no dependencies on other GMS software (frameworks, libraries, COI

classes, etc.)

30 Plugin Deployment

GMS has two primary plugin deployment schemes

. All current plugins are in-memory libraries

. Designed to support plugins deployed as services

Packaging the same plugin logic in both schemes requires implementing a Plugin Accessor for each deployment.

In-memory Plugin

rPlugin Component (JAR)

, Plugin Interface ,

i
Plugin Accessor

Plugin Logic

Pllin

Algorithm

Custom accessor
for each

deployment

Deployments
share plugin logic

\

Remote Plugin

Plugin Access Library (JAR)

Plugin Interface

Plugin Accessor
,

Plugin Service

, Service Controller ,
ii

Plugin Logic

Example Plugin Implementation — Signal Detector STA/LTA Plugin

In-memory plugin

See /gms/core/signal-detection in GMS software release

Plugin Interface

SignalDetectorPlugin

Plugin Accessor

[StaLtaPowerDetector
Component

Plugin

StaLtaPowerDetector
Plugin

Algorithm

Algorithm
 .

1. getName and getVersion
2. initialize(configuration)
3. detectsignals(waveform[]) : Instantll

1. Implements getName and getVersion
2. Initialize() and detectsignals() implementations delegate to

StaLtaPowerDetectorPlugi n

detectSignals implementation:
a) Condition waveforms

i. Interpolate over gaps
ii. Merge adjacent waveforms
iii. Convert STA/LTA window parameters from time units to sample counts
iv. Extract double[] from waveforms

b) Invoke STA/LTA algorithm
c) Convert algorithm results from triggered sample indices to absolute times

1. Implements STA/LTA transform and trigger on a double[]
2. Returns triggers as sample indices

32 Alternate Language Plugins — Notional (1/2)

GMS plugin architecture supports implementing plugins in non-Java languages

Integrating the plugin requires minimal Java (a Plugin Accessor)

{

Plugin Interface

t
Plugin Accessor

 .o.

Algorithm

1. Use Java to implement Plugin Accessor to call a
Plugin implementation in an alternate language

1. Consume and produce COI data objects
a) Use a COI implementation in the plugin

language
b) Deserialize necessary fields into plugin

specific data objects
2. Implement Plugin pre- and post-processing logic
3. Implement plugin Algorithm

 ,

33 Alternate Language Plugins — Notional (2/2)

/ Plugin Component (JAR)
r

Plugin Interface

t

A

•

 i

Plugin Accessor

Plugin Logic
(JVM language)

[
Plugin

Algorithm

r Plugin Access Library
(JAR)

Plugin Interface

Plugin Accessor

 J
JNI, HTTP, gRPC, etc.

Plugin
Implementation (non

JVM lan • ua • e
Plugin logic (e.g. \
COI object
manipulations;
algorithm
invocation logic)
can also be
implemented in
Java and
packaged in the
JAR.

34 Complication: Plugins calling Plugins

A GMS plugin may call other GMS plugins, e.g.

Locator plugin calling Feature Prediction plugin

Feature Prediction plugin calling Earth Model plugin

Plugin Interface

Plugin Accessor

Plugin

Algorithm

c
Plugin
Registry

„
calls :

1
\Iv

[Nested
Plugin i

Structure
- Plugin contains a Plugin Registry
. Discovers nested plugins

- Registers nested plugins

Selects nested plugins to use during each processing request

Calling Nested Plugins

Prefer for Plugin to make calls to nested plugins to
isolate Algorithm from GMS libraries

Algorithm calls nested plugins if necessary
(performance; avoid complicated interactions
between Plugin and Algorithm, etc.)

35 1

END

