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History of Sandia’s Fire Research Program

Supporting nuclear fire science research for 40+ years
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| Current HEAF Work

To develop the ability to quantify the damage that might result from a high energy arc fault event (HEAF
event) in a nuclear power plant, and ultimately to prevent HEAF events from occurring

Developing model and resulting look-up table for:
* Arc plasma emission as a function of current and gap

* Incident energy as a function of current, breach geometry, and
electrode material

* Different components/equipment, such as switchgear, bus-duct,
etc., based on OpEx

* Full-scale test data will be used to validate model predictions

» Determining ZOI based on fragility Flux/Temp and incident
energy for varying electrode materials and geometries




Small Scale HEAF Testing

Experimental test bed for small scale (200A-1kA) HEAFs
*Enables model validation
*Modifications to address NRC current and voltage targets
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Large Scale HEAF Testing

Particle collection: To quantify aluminum particle size and degree of aluminum oxidation
and to correlate aluminum particle oxidation with distance from switchgear

rack 1: right side, 44” rack 3: front side, 88” Tape from back wall plastic, 198”
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Initial particle analysis:
1) micron sized Al particles display 24-70% oxidation (melted in arc + solification/surface oxidation)
2) Al nanoparticles appear 70-100% oxidized (vaporized + oxidation)
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HEAF Modeling Overview N

Best estimate of credible energy release scenarios and respective zones of influence for range of appropriate I
equipment at NPP. Easy to follow methodology and guidance on how and when to apply the ZOI within

the FPRA
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Aria (arc-fault model) :

Inputs: arc current, gap distance
Outputs: - plasma temperature (~10000K)
- radiative & convective heat transfer

Small scale experiments:
Confirm plasma temperature
Confirm blackbody spectrum

Measure radiative energy transfer
Black plate calorimeters

Measure thermal field
Schlieren imaging of air temp

sooty flame,
cabinet geometry,
gas expansion

me)

blackbody radiation,
thermal fields,
incident energy,
zone of influence

Fuego (sooty flame model):

Absorption and blackbody emission (<3000K)

Fuego outputs: - flame temperature
- gas expansion of flame
- radiative heat transfer
- convective heat transfer
- thermal fields

KEMA experiments:

Measure “sooty flame” temperature
Confirm blackbody spectrum
Measure convective flow, incident energy




Evolution of Severe Accident State of Knowledge

Significant investment over 30 years

> Understanding of severe accident
phenomena

> Development of computer codes to
represent severe accident progression

o Studies of best estimate severe
accident progression

> Development of severe accident
uncertainty analysis technology

Expansion of risk-informed
decision-making

Occurrence of Fukushima Daiichi

> New perspectives on reactor scale
severe accident progression

How are legacy assumptions in PRAs

affected?
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Implications from Evolution of Severe Accident State of Knowledge
9 RCS Depressurization after Core Damage

In early PRAs, implications of high pressure RPV/RCS failure WUSNRC ==
more Signiﬁcant —
° Potential for thermally-induced SGTR (TI-SGTR) following onset of State-o1-th8-Aft RESEter

core damage less well understood Sl
State-of-the-Art Reactor
> RPV lower head breach with vessel at high pressure assumed more Volume 2: Conseduence Analyses Profct
Hkel Surry Intograted Analysis e
¢ y Blackout of the Surry Power Station
° Led to significant past effort studying high-pressure melt ejection (HPME) and Direct Draft Report

Containment Heating (DCH) consequences

o Surry SOARCA spent significant effort to refine understanding of
potential for hot leg creep rupture (HLCR) relative to TI-SGTR
> Hot leg creep rupture dominates realizations
o Approximately 10% of cases realized TI-SGTR instead of HLCR
> No scenarios with high pressure RPV lower head breach

Office of Nuclear Regulatory Researcl h
gty Office of Nuclear Regulatory Research
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Figure 6.1 Map of Containment Bypass Outcome for No Operator Intervention and
Variations in SG Steam Leakage and RCP Shaft Seal Leakage Which
Increases at 13 Minutes

... mixing zone includes
hot leg and inlet plenum




Implications from Evolution of Severe Accident State of Knowledge
10 State-of-the-Art Reactor Consequence Analyses (SOARCA)

Many legacy Level 2 assumptions in PRAs have
evolved trom internal events PRAs

o

(o]

These assumptions have t }Ia{ically not driven internal
event PRA results (e.g., LERF)

Often made for expediency or to bound prevailing

knowledge gaps in past

Consider Ice Condenser plant

o

Conditional containment failure probability aided by
availability of hydrogen igniters

> Core damage does not imply containment failure (large early
release)

DC power is typically available across many dominant
cutsets in internal events PRA

> Hydrogen igniters are available

For DC power loss cutsets, expedient to assume
containment failure due to hydrogen combustion

°  Generally not dominant in internal event PRAs

A range of external events could consequentially fail

DC power
> Hydrogen igniters unavailable
> LERF becomes similar to CDF without credit for DC power

Severe accident uncertainty analyses developed for

Sequoyah SOARCA

° Much lower likelihood of containment failure due to hydrogen
combustion

Mitigation Mitigation Mitigation

Mitigati
External events

State-of-the-Art Reactor
Consequence Analysis (SOARCA) Project

Sequoyah Integrated Deterministic and
Uncertainty Analyses
Draft Report
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Evolving Severe Accident State of Knowledge
Fukushima Daiichi

Fukushima Daiichi Units 1, 2 and 3 progressed

to ex-vessel core damage

° Three fundamentally different accidents
> Unit 1 unmitigated

> Units 2 and 3 partially mitigated

° Three different damage end states -

T114~7264

Ex-vessel core damage conditions most i =
. . . g i | b, I
important contribution to knowledge base cosa—0s14 \\
° Unit 1 has had late failure of containment floor 6364~6514 NIBRA
) oL 6214~ 6364 [
despite no water injection for a few days | 606a~6214
5914~ 6064

> Debris has appeared to spread like viscous lava ol et

° Unit 2 has peripheral lower head failure
> ~80% of debris in lower plenum
o Largely metallic debris on reactor pedestal floor \:- . — G | 3 openiig" (CRD rail)
' : f . q - T.PA487

> Unit 3 has debris localized within reactor pedestal

o Large solid debris mass under center of vessel

el
T.P. 4044




Implications from Evolving Severe Accident State of Knowledge

12 RPV Lower Head Breach

Fukushima Daiichi indicating earlier vessel breach than
models currently estimate

> Lower head failure prior to build-up of large molten debris
pools in lower plenum

Past models based on non-prototypic conditions

> Focus on ability of lower head to resist heat loads from
molten debris beds

> No consideration of complex material interactions of debris
with lower head steel wall
> Low temperature dissolution uncooled lower head wall

> Low temperature Fe eutectic interactions with material in debris

Large mass of oxidic debris remains largely solid at time
of vessel breach

o Relocation of material occurs as debris melts and moves out
of pre-existing failure

Severe Accident Thermal Fuse
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Implications from Evolving Severe Accident State of Knowledge

Ex-Vessel Damage

Lagfgely solid debris upon lower head breach presents
different ex-vessel damage perspective

> Debris relocates as it melts
> Highly viscous slurry relocating into containment
> Enhanced freezing on any below-vessel structures

Ratle of debris relocation governed by rate at which debris
melts

> May have very brief bursts of material relocation due to
peripheral debris slumping from reactor core

> From EPRI SAMG TBR: debris melting rate ~350kg/s

Ex-vessel damage conditions in containment influenced
by

> Rate of debris relocation

° Temperature of relocating debris

° Duration of debris pour

State-of-the-art modeling with MELTSPREAD indicates
limited debris spreading

Highly particulate, “chunky” debris more readily cooled
when water introduced into containment
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Implications from Evolving Severe Accident State of Knowledge
In-Vessel Retention and Fukushima Daiichi Unit 2

In-vessel retention strategies provide external and potentially internal cooling
° Fukushima Daiichi Unit 2 highlights important role of water injection in maintaining large fraction of debris

inside vessel

Water injection provides an effective means to prevent thermal excursions in lower head wall
° Preventing lower head wall temperature thermal excursion eliminates activation of lower head “thermal fuse”

Unit 2 Muon Tomography

Unit 2 CRD Forest
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Further Evolution of Severe Accident Progression Realism

Advances in severe accident knowledge base

o Have shown a more gradual evolution of accident progression

Events that lead to large energy release into containment less
likely to occur or cause failure of containment boundary

Occurrence of challenge to containment structural integrity more

slowly evolving
> Decay heat rejection leads to

° Slow build-up of containment pressure and temperature

° Mechanical challenge to structural boundary

° Thermal-mechanical challenge to containment polymeric seals

Pressure/Thermal Fuses exist that tend to fail before significant
mechanical or thermal “charge” builds up in the system

> Hot leg creep rupture
> Early RPV lower head breach

NRC Safety Goal
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Thank you
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18 IKey Experimental Programs

Characterizing fire behavior in
nuclear-specific applications

*Cable performance when
exposed to thermal
environment

*Circuit reliability
*Validating complex models

*Using state-of-the art

instrumentation to study high
energy arc faults (HEAFS)

Supporting NRC in Fire PRA

development




History of Sandia’s Fire Research Program

Supporting nuclear fire science research for 40+ years
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