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Stewardship (NNSAASC) Energy (ASCR, EERE, NE) Climate (SciDAC, CSSEF, ACME)
Safety in abnormal environments Wind turbines, nuclear reactors

Addtnl. Office of Science: 
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Common theme across these applications:

• High-fidelity simulation models: push forward SOA in computational M&S w/ HPC
4 Severe simulation budget constraints (e.g., a handful of runs)
4 Significant dimensionality, driven by model complexity (multi-physics, multiscale)
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Research Thrusts for UQ

• Focus: Compute dominant uncertainty effects despite key challenges

• Emphasize scalability and exploitation of special structure

• Adaptivity: p- and h- refinement of stochastic expansions

• Adjoints: gradient enhancement for PCE / SC / GP

• Sparsity: compressed sensing

• Low Rank: tensor / function train (w/ UMich)

• Dimension reduction: active subspaces (w/ CU Boulder),
adapted basis PCE (w/ USC)
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• Compound efficiencies

• Multilevel-Multifidelity with sampling & CS/FT surrogates (new: ROM, NN

• Active subspaces: subspace quadrature, enhance MF control variates

• Address complexity w/ component-based approach

• Emulator-based Bayesian inference, Mixed aleatory-epistemic UQ,
Optimization under uncertainty (new: Optimal experimental design)

• Position UQ for next generation architectures

• Current (imperative): multilevel parallelism (MPI + local async)

• Future (declarative): exploit DAG + AMT for ensemble workflows (w/ Stanford)
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Research & Development in Multifidelity Methods
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National
Laboratories

Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy
>• address scale and expense for high fidelity M&S applications in defense, energy, and climate
>. render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible

A2e wake dynamics

Emerging mission areas: abnormal thermal, Z-pinch MagLIF, quantum chemistry

Monte Carlo UQ Methods

• Production: optimal
resource allocation for

lity,
combined (DARPA
SEQUOIA/ScramjetUQ

• Emerging: active
d •

LDRD), generalized
fmwk for approx
control variates
(ASC V&V Methods)

• On the horizon: control
of time avg; learning
latent var relationships
(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)

Surrogate UQ Methods (PCE, SC)

• Production (v6.10):
ML PCE w/ projection &
regression; ML SC w/
nodal/hierarchical interp;
greedy ML adaptation
(DARPA SEQUOIA)

• Emerging: multi-index
stochastic collocation,
multilevel function train
(ASC V&V Methods)

• On the horizon: new
surrogates (ROM, deep
NN) with error mgmt
('19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

10,
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Optimization Under Uncertainty

• Production: manage simulation
and/or stochastic fidelity

• Emerging:
Derivative-based methods (DARPA SEQUOIA)
• Multigrid optimization (MG/Opt)
• Recursive trust-region model mgmt.:

extend TRMM to deep hierarchies
Derivative-free methods (DARPA ScramjetUQ)
• SNOWPAC (w/ MIT, TUM) w/

MLMC error estimates

Robust _A

• On the horizon: Gaussian process-based
approaches: multifidelity EGO (FASTMath OUU);
Optimal experimental design (OED) (A2e)

Key Challenge.- existing ML/MF/MI performance is compelling on (elliptic) model problems, but
significant generalization required for engineering applications with non-trivial model relationships



DARPA SEQUOIA: Hierarchy of Fidelity Levels
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Low fidelity model

• Quasi 1D ideal/non ideal
nozzle aero

• 1D heat transfer

• Coarse axisymmetric
FEM model

• 30 seconds on one core
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Medium fidelity model
2D Euler/RANS
axisymmetric CFD

• 1D heat transfer

• Coarse axisymmetric
FEM model

• 5 minutes on one core
(2D Euler)
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High fidelity model
3D non-axisymmetric
Euler/RANS CFD

• 1D heat transfer

• Full 3D FEM model

• 2 hours on 20 cores
(3D RANS, coarse mesh)

Multiple mesh refinements available for Medium & High (ragged ML-MF)



Initial Deployment of MLCV MC to UCAV Nozzle UQ OH rot
I aboratories

Context: Analysis of performance of UCAV
nozzles subject to environmental, material,
and manufacturing uncertainties.

Goal: Explore utility of low fidelity model
(potential flow, hoop stress) alongside
discretizations for medium fidelity (Euler, FEM)

CZ,

Estirnator Variance (norrnalized)

(a) Ckmuse

••

(c) Fine

Triangles
Coarse 6,119
Medium 29,025
Fine 142,124

TABLE: Number of triangles.

LF MF

Coarse 0.016 0.053
Medium N/A 0.253
Fine N/A 1.0

TABLE: Computational cost.

Optimal sample allocations based on relative

cost, observed correlation between models,

and observed variance distribution across levels

Target accuracy LF
Coarse Coarse

MF
Medium Fine

0.01 21143 1757 20 20
0.003 69580 5775 36 20
0.001 212828 17715 109 34



Updated Deployment of MLCV MC to UCAV Nozzle UQ
Sandia
National
I ahnratnripc

LF LF (updated)
correlation Variance reduction [W] correlation Variance reduction [W]

Thrust 0.997 91.42 0.996 94.2
Mechanical Stress 2.31e-5 2.12e-3 0.944 89.2
Thermal Stress 0.391 12.81  0.987 93.4

stimator Variance (normal zed)
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DARPA EQUiPS (Scramjet UQ):
LES Models for Turbulent Reacting Flow in HIFiRE

Multiscale-multiphysics application of
Large Eddy Simulation (LES)
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Model forms:
• 2D, 3D

Discretizations:
• d/{8,16,32,64}

• Provided benchmark LES calculations of the
Hypersonic International Flight Research Experiment
(HIFiRE) to support development of UQ

• Case of interest corresponds to the geometry and
conditions of ground based expenments performed
in the HIFiRE Direct Connect Rig (HDCR)

• A hierarchy of unit cases (including high-fidelity LES
of the HDCR) has facilitated UQ tasks and provided
optimal workflow between team members

• Unit cases are designed to emulate key QoIs while
making comprehensive parametric studies possible
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Initial Deployment of MLCV MC for Scramjet UQ

Context: 3D LES simulation of scramjets is extremely expensive and a significant
challenge for UQ; even more so for OUU.

Goal: Demonstrate UQ in moderately high D using only a "handful" of HF simulations,
by leveraging lower fidelity 2D models and coarsened 2D/3D discretizations

UQ Approach: MLCV algorithm described previously.

1

cp
0.1

0.01

........ ...... ....... .....

• • ,
MC

MLMC
MLMF

•

10 100 1000 10000

Equivalent HF runs

100000 le+06

2D 3D
d/8 5E-4 0.11
d/16 0.014 1

TABLE: Computational cost.

2D 3D
d/8 4,191 263
d/16 68 9
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Optimal sample allocations based on relative

cost, observed correlation between models,

observed variance distribution across levels,

and MSE target (.045 of pilot MSE)

Optimized allocation: achieve MSE target for 3D LES in 24D using only 9 HF sims. (50 equiv HF)



Updated Deployment of MLCV MC for Scramjet UQ

P1 updated: re-formulate inputs in order to obtain an higher level of turbulence and,
in turn, a more non-linear response of the system

PO,meari PO,rmsdnean Mmean TKEm„, Xmean
P1

d78
d716

4.02554e-03
4.03350e-07

1.90524e-06
7.77838e-08

1.99236e-02
6.68974e-05

3.34905e-07
1.74847e-08

4.24520e-03
4.40048e-05

P1 updated
d78
(0.6

4.05795e-03
2.85017e-04

1.90612e-06
7.36978e-07

1.60029e-02 7.53353e-07 9.-1-1403e-04
2.07638e-03 2.99744e-07 2.57399e-02

Table 1 Variance for the five QoIs of the P1 unit problem.
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Observations from pilot sample: decay in variance across discretizations (LF d/8 and
discrepancy d/16 — d/8) no longer observed for all Qol

lmplications: requires more focused analysis of deterministic convergence properties 4
Need to engage additional refinement levels (i.e., d/32, d/64) in order to converge Qol
statistics that are closely tied to resolution of turbulence.



11 Computational Approach

•Low Fidelity: OpenFAST-AeroDyn-Turbsim (https://github.com/OpenFAST)

• Turbsim generates turbulent atmospheric boundary layer flow field, semi-empirical

• AereoDyn models the aerodynamic forces on the rotor

• OpenFAST models the structural and controls response of the rotor (same for Nalu)

•High Fidelity: Nalu (https://github.com/NaluCFD)

• LES, Solves the Navier-Stokes equations in the low-Mach number
approximation with the one-equation, constant coefficient, TKE
model for SGS, unstructured massively parallel.

• Actuator Line model of the rotor

• Single, uniform mesh (no nesting)

Cost estimates for Nalu and OpenFAST simulations.

Nalu V1.0
• SAND2014-15367M

Mar

Open SOUrCe: BSD license has been granted-4
Weak scaling demonstrated to 524,000 core with 10 billion unstructured hex mesh

Generalized unstructured (CVFEM and EI3VC supported)

• 13 r
Bacistep (vorticity)

2D/3D Walk

Mr=

0 arorial
Laboratories

41111r/H.,

Time: 60 OCCCOO

20/30 sliding mesh

Multiphysics CHT LES Jet

(cold and reacting)

Multiphysics Fluids/PMa

Case Mesh size Simulation time
(seconds)

CPUs Cost
(CPU-hours)

Cost
(relative)

OpenFAST 500 1 0.42 1
Coarse 100x50x50 2000 80 240 576
Medium 200x100x100 2000 160 960 2304
Fine 400x200x200 2000 400 6860 16500

Reference 800x200x200 2000 400 38400 91400

Domino, S. "Sierra Low Mach Module: Nalu Theory Manual 1.0", SAND2015-3107W, Sandia National Laboratories Unclassified Unlimited
Release (UUR), 2015. https://github.com/NaluCFD/NaluDoc



Estimator Performance Extrapolation
12
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Given the statistical properties estimated for power and thrust,
we can extrapolate the behavior of several estimators:
• Standard MC estimator

• MLMC-31: Multilevel Qo (Qi — Qo) + (Q2 — Q1) • MLMC-21: Multilevel Qi + (Q2 — Qi)

• MLMF-31: MLMC-31 with CV for Qo
Power

100

10

0.1

MC  
MLMC
MLMF

MLMC-2I  
MLMF-21

10 100 1000

Equivalent HF simulations
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• MLMF-21: MLMC-21 with CV for Q1
Thrust

10 100 1000

Equivalent HF simulations

Level
0

IDIC
Nalu
161

Power
MLMF

Nalu OpenFAST
1:37 2040

IIILMC
Nalu
181

Thrust
MLMF

Nalu OpenFAST
136 2887

10000

Nalu LES for QO was too coarse and non-predictive



Multilevel Multifidelity Sampling Methods
Cardiovascular flow

3D Model ID Model OD Model

Model relationships / graph topologies
MLA

HF 3D
M FA MLMF

MLC

CV HF 3D
3D 1D 1D 3DLF HF4111.

MFB

HF

MLB
LF1 LF1D 1D

CV
OD

t 3D
3D

CV
OD

LF

LF,OD

OD

(a) Multifldelity (CV) (b) Multilevel (c) Multilevel-Multifidebty

Sandia
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• Laboratories

Solver
Cost

(1 simulation)
Effective Cost

(No. 3D Simulations)

3D
1D
OD

96 hr
11.67 min

)

1
2E-3

1.45E-5

Courtesy of C. Fleeter (Stanford), Prof. D. Schiavazzi
(Notre Dame), Prof. A. Marden (Stanford)

Costs to achieve prescribed error tolerance

Method
Effective Cost

(3D Simulations)
No. 3D

Simulations
No. 1 D

Simulations
No. UD

Simulations

MC 9 885 9 885
MFA 56 21 15 681
MFB 39 36 154 880
MLA 305 212 41 990
MLB 156 150 342 060
MLC 165 156 1 324 351 940
MLMF 165 156 1 249 362 590

1 D predictivity was insufficient and OD contribution required control weighting



Multilevel Multifidelity Challenges
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Key Challenge: existing ML/MF/MI performance is compelling on (elliptic) model problems, but
significant generalization required for engineering applications with non-trivial model relationships

• Do we really know the predictive value of each model a priori?
• Are the dependency relationships clear from the modeling source?
• Conversely, can there be a penalty in greater generality w/ more weights to estimate?

Research directions.-

• Generalize: start from a fully-connected, weighted structure

• Compute correlations across full model ensemble

• Optimize: learn latent relationships for an optimized graph representation

• Estimate reduced weight set from finite simulation instances



Multilevel Multifidelity Sampling Methods
Generalized framework for approx. control variates

For M approximate models, look beyond
(recursive) model pairings

AI

QCV = (Qi Pi)

i=1

farg min var [Q‘cv(o/)] 1=>
a

10

10 

C leixm covariance matrix among Qi

c E Rm vector of covariances between Q

=

Sim•le Monomial Example

10 20
x, so that ri = 2i+x

30

100e-
o

ts, 1 0 -
o

4g 10

8 10-
g

> 10

10-
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10 20
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A. Gorodetsky, G. Geraci, E., J. Jakeman "A Generalized Framework for Approximate Control Variates," arxiv.org/abs/1811.04988



Multilevel Multifidelity Sampling Methods
Generalized framework for approx. control variates

For M approximate models, look beyond
(recursive) model pairings

cv=(2+
i=i

f
C c Rm x m

c E

covariance matrix among Qi

 R arg min yar [1)ev(o/)] m vector of covariances between Q and each Qi

= C-1c

10

10—

Sim•le Monomial Example

OCV-3

10 20
x, so that ri = 2i+x

30
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Generalized framework for approx. control variates
Tunable model problem

Q= A (cos x5 + sin By5) , Qi = A cos Oi x3 + sinoi y3) , Q2 = A2 (COS 02 X + sin 02 y)

8

A = 11.A I = -V1 and A2 = •Na 0= /112, 02 11-/6 and 02 <Bl < O.
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A. Gorodetsky, G. Geraci, E., J. Jakeman "A Generalized Framework for Approximate Control Variates," arxiv.org/abs/1811.04988v3
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Two dimensional elasticity in heterogeneous media

Hyperbolic system:
elastic wave propagation in 2D
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Emphasis on Scalable Methods for High-fidelity UQ on HPC

Compounding effects:
• Mixed aleatory-epistemic uncertainties (segregation nested iteration)

• Requirement to evaluate probability of rare events (resolve PDF tails for Qol)

• Nonsmooth Qol (exp conv in spectral methods exploits smoothness)

Steward Scalable Algorithms within

Core (Forward) UQ Capabilities:

DAKOTA
Explore and predict with confidence

• Sampling methods: MC, LHS, QMC, et aI.

• Reliability methods: local (MV, AMV+, FORM, ...),
global (EGRA, GPAIS, POFDarts)

• Stochastic expansion methods: PCE, SC, fn train

• Epistemic methods: interval est., Dempster-Shafer evidence

CParametersModel

0.8

0.6

82
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samples - 5

a. a
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02 09 06 08

•

DAKOTA
Optimization
Uncertainty Quant.
Parameter Est.
Sensitivity Analysis
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(13lack box:
Sandia simulation codes
Commercial simulation codes

Library rnode (semi-intrusive):
ALEGRA (shock physics),
Xyce (circuits), Sage (CFD),
Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter,
SIERRA (multiphysics) 
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Multiple Model Forms in UQ & Opt
Discrete model choices for simulation of same physics

A clear hierarchy of fidelity (from low to high)
• Exploit less expensive models to render HF practical

• Multifidelity Opt, UQ, inference
• Support general case of  discrete model forms

• Discrepancy does not go to 0 under refinement

An ensemble of peer models lacking clear preference
structure / cost separation: e.g., SGS models
• With data: model selection, inadequacy characterizatior

• Criteria: predictivity, discrepancy complexity
• Without (adequate) data: epistemic model

form uncertainty propagation
• Intrusive, nonintrusive

• Within MF context: CV correlation

Discretization levels / resolution controls
• Exploit special structure: discrepancy 4 0

at order of spatial/temporal convergence

Combinations for multiphysics, multiscale

Sandia
National
Laboratories
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Simple demonstration of key ML-MF concepts
Monte Carlo Sampling: MSE for mean estimator
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Problem statement: We are interested in the expected value of Qm = g(Xm) where

■ M is (related to) the number of spatial degrees of freedom

■ E [Qm] M---*cc> [Q] for some RV Q: Q R

Monte Carlo:

(WC clef

M 'N - KT

two sources of error:

■ Sampling error: replacing the expected value by a (finite) sample average

■ Spatial discretization: finite resolution implies QM

Looking at the Mean Square Error:

E [(e47N E [Q])2] = N-1Var (QM) + [Qm — Q])2

Accurate estimation Large number of samples at high (spatial) resolution



Simple demonstration of key ML-MF concepts
Multilevel MC: decomposition of estimator variance

Multilevel MC: Sampling from several approximations Qm of Q (Multigrid. )

ingredients:

■ {_Alf : f = 0, . . . ,L} with Mo
< < < m-L def m

■ Estimation of IE [Qm] by means of correction w.r.t. the next lower level

def linearity
1 ---+ 7,fQm] = E [Qm-0]+>:E [QiviR Chh_i IE [Ye]

t=i e=o

D.- Multilevel Monte Carlo estimator

emi, clef E MC
t,N

t=0

■ The Mean Square Error is

[Q112] =
=0

n(i)
'u4 — 1 )

/V1Var (Ye) ( [Qm QD2

Note If Qm Q (in a mean square sense), then Var (Ye) 
00

0

Sandia
National
laboratories



Simple demonstration of key ML-MF concepts
Multilevel MC: optimal resource allocation

Let us consider the numerical cost of the estimator

Determining the ideal number of samples per level (i.e. minimum cost at fixed
variance)

CCOYIL)=1 .eCt
f=0

L

Lagrange multiplier

L.Arf-lVar (Ye) = e2/2
E=0

V
Balance ML estimator variance
(stochastic error) and residual

bias (deterministic error)
4 don't over-resolve one at
the expense of the other

Sandia
Mad
laboratories

2
V =

E2
(Var ck )1/21 var (Ye) 

Level Level
independent dependent

f

Optimal sample profile

M. Giles, "Multilevel Monte Carlo path simulation," 2008.



Research & Development in Multifidelity Methods
Sandia
National
Laboratories

Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy
>• address scale and expense for high fidelity M&S applications in defense, energy, and climate
>. render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible

Emerging mission areas: abnormal thermal, Z-pinch MagLIF, quantum chemistry

Monte Carlo UQ Methods

• Production: optimal
resource allocation for
multilevel, multifidelity,
combined (DARPA
SEQUOIA/ScramjetUQ)

• Emerging: active
dimensions ('18 EE
LDRD), generalized
fmwk for approx
control variates
(ASC V&V Methods)

• On the horizon: control
of time avg; learning
latent var relationships
(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)

Surrogate UQ Methods (PCE, SC)

• Production (v6.10):
ML PCE w/ projection &
regression; ML SC w/
nodal/hierarchical interp;
greedy ML adaptation
ARPA SEQUOIA

Emerging: multi-index
tochastic collocatio
multileve unction train
(ASC V&V Methods)

• On the horizon: new
surrogates (ROM, deep
NN) with error mgmt
('19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

xr•

io-4

lef

IPLPO

SECURE Gc

Optimization Under Uncertainty

• Production: manage simulation
and/or stochastic fidelity

• Emerging:
Derivative-based methods (DARPA SEQUOIA)
• Multigrid optimization (MG/Opt)
• Recursive trust-region model mgmt.:

extend TRMM to deep hierarchies
Derivative-free methods (DARPA ScramjetUQ)
• SNOWPAC (w/ MIT, TUM) w/

MLMC error estimates

Robust

• On the horizon: Gaussian process-based
approaches: multifidelity EGO (FASTMath OUU)



Surrogate approaches: Greedy multilevel refinement

OL. ̂  00 - for Ai = (.21— Q1-I

Sandia
National
Laboratories

Compete refinement candidates across model levels: max induced change / cost
• 1 or more refinement candidates per model level
• Measure impact on final Qol statistics (roll up multilevel estimates)

• norm of change in response covariance (default)
• norm of change in level mappings (goal-oriented: z/p/p/p*)

normalized by relative cost of level increment (# new points * cost / point)

• Greedy selection of best candidate, which then generates new candidates for this model level

Level candidate generators: 
• Uniform refinement: 1 exp order / grid level candidate per model level

• Tensor / sparse grids: projection PCE, nodal/hierarchical SC
• Regression PCE: least squares / compressed sensing

• Anisotropic refinement: 1 exp order / grid level candidate per model level
• Tensor / sparse grids

• Index-set refinement: many candidates per level
• Generalized sparse grids: projection PCE, nodal/hierarch SC
• Regression PCE

• Adapted candidate basis: -3 frontier advancements per model level
• Regression PCE (Jakeman, E., Sargsyan, "Enhancing t1-minimization estimates of

polynomial chaos expansions using basis selection," J. Comp. Phys., Vol. 289, May 2015.)

3 active
LF se s

5

4

1
0

4 active
discrepancy sets

0 1 2 3 4 0 1 _ 3 4

.

 •

• • • •

•

• 



Multilevel / Multi-index PCE: greedy competition across models

Greedy ML PCE: uniform CS
10

10

10 5

10

-e- PCE CS single level
• .6.- MF PCE CS 2 level p = 10

• V- ML PCE CS 5 level K = 1

• -A- ML PCE CS 5 level c= 1.5
• ML PCE CS 5 level = 2

• -4 - M L PCE CS 5 level x = 3
• -0- Greedy ML PCE CS 5 level

A

10' 10'
Equivalent HF Simulations

Conv Tol N1 N2 N3 N4 N5

1.e-1 198 9 9 9 9

1.e-2 644 198 9 9 9

1.e-3 1802 644 9 9 9

1.e-4 4505 1802 50 9 9

10

10 5

1 de

10 11

10-12
101 10'

Equivalent HF Simulations

Greedy ML PCE:
uniform / generalized SG

- PCE Uniform SG single level
- PCE GSG single level

• -0- Greedy ML PCE Uniform SG 5 level
• -0- Greedy ML PCE GSG 5 level

105

Conv Tol N1 N2 N3 N4 N5

te-2 43 23 19 19 19
Le-4 211 83 19 19 19
1.e-6 391 271 156 19 19
1.e-8 1359 743 327 59 19

1.e-10 3535 2311 1039 391 19
1.e-12 10319 5783 2783 1343 43
1.e-14 26655 14991 8063 3703 1535

1

to°

Greedy multi-index PCE

Sandia
National
Laboratories

I 10-3 
••II. •

•

••• •

• •

1

U31.121)
([0. 1, 2, 3],[0, 1, 2])

([4],[2])

([0, 1, 2, 3, 4],[0, 1, 2])

([5].121)
([0, 1, 2, 3, 4, 5],[0, 1, 2]) 2

10-1
Work

L., I. L. ,
ONS.C1MONS.

104

102

100

10°

161

2
10361

045

307

135

39

773

269

111

19

345

127

O`OseNS'Ose•-.M.,7%;‘,,7";`,-Nv-s,vm,;,̀3•NThi'v'

(a, al)



SWiFT Site Experimental Uncertainty Quantification

• Inflow Measurements

.

.

•

• RH

• T

• TI (sonic)

a

. U (sonic)

• V (sonic)

• WD (sonic)

• Turbine Measurements • Wake Measurements

. Aerodynamic power

• Rotor speed

• Aerodynamic torque

. Rotor thrust

Individual blade root loads

• Yaw heading

. Yaw misalignment

• Blade pitch

• Rotor azimuth

• Nacelle acceleration

• DTU Spinner Lidar

• Wake identification

and tracking

• Turbulence

estimators

Ranges for uniform distributions of the three
uncertain variables considered in this study.

UnceItainty Minini lilli NIaxiniuluni
Speed 6.5 m/s 7.5 m/s
Densitv 0.97 kg/m3 1.19 kgim 3
Yaw -25' 25'



Multilevel Multifidelity Sampling Methods
Cardiovascular flow

1. MRI 2. Pathlines 3. Segmentation 4. Solid 5. Mesh 6. Bou ndary Conditions 7. Simulation

limo MA Ow Wen

Courtesy of C. Fleeter (Stanford), Prof. D. Schiavazzi (Notre Dame), Prof. A. Marden (Stanford)

3D Model

Sandia
National
Laboratories

SO

a

L.

IDC,r

vl in

tBC

Solver
Cost

1 simulation)
Effective Cost

(No. 3D Simulations)

3D
1D
OD

96 hr
11.67 min
5 sec

1
2E-3

1.45E-5,EICr R

1D Model OD Model



Multilevel Multifidelity Sampling Methods
Cardiovascular flow

Model relationships / graph topologies

HF

MLA

I 3D
MFA MLMF

MLC

CV HF 3D
3D 1D 1D 3D HFLF

1D LF1 LF 1D
CV

OD
MFB MLR

CV HF 3D
3D OD LF0OD

LF OD

(a) Multifidelity (CV) (b) Multilevel (c)

Costs to achieve prescribed error tolerance

Method
Effective Cost

(3D Simulations)
No. 3D

Simulations
No. 1D

Simulations
No. OD

Simulations

MC 9 885 9 885
NIFA 56 21 15 681
MFB 39 36 154 880
MLA 305 212 41 990
MLB
MLC
MLUF

156
165
165

150

156
156

1 324
1 249

342 OW
351 940
302 590

Sandra
National
Laboratories

Im•lies need for not oresumin. a fixed to•olo. .



Sampling Methods: Classical Control Variate 4 Multifidelity MC

A Control Variate MC estimator (function G with E [G] known)

argmin Var COCCl/ )

,WCCV AMC
1%1

i3 = 
Var1/2 (G)

Var1/2 (Q)

/3 (a..../11,../vC E [G])

Sandia
National
Laboratories

COCCV)
Vctr Vctr (OTC) (1 — p2)

In our context, G is a low fidelity approximation of Q and its expectation is not known a priori

Let's modify the high-fidelity Qol, QW, to decrease its variance

‘FIE:iv_CV oir,N + CowN E [Q.1]

additional and independent set ALF TNHF

Minimize CV estimator variance 4 control param. as before:

dVar(e2mHF•1") Varli 2 (C)
 = 0 —> a = p

Varl/2 (Q11)
Minimize total cost 4 optimal sample ratio: r* = —1 + P

2

1 — p2

Co
rr

el
at

io
n 
sq
ua
re
d 

Var (07Arcv) = Var (011) (1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

r 2 )r PHL

MFMC cost relative to MC

10 100

w

1000

Theta
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

10000

Pasupathy et al., 2012; Ng and Willcox, 2014; Peherstorfer, Willcox, & Gunzburger, 2016; et al.



Sampling Methods:
Combining ML and CV for multidimensional model hierarchies

■ OUTER SHELL —

LHF LHF
E rF1

=
1=0 1=0

IP. INNER BLOCK — Multi-fidelity (i.e. control variate on each level)

yr,* nIF cte E )

IP. Cost per level is now Cieq = + (1 + ri)

IP. the (constrained) optimization problem is

LEF (LHF 1 
argmin (L), where G=E Nrer + 

nr 
Var (Yr) A e(re) — e2 /2

,r A E=0 t =0 
N

P'• A e(re) = — p2  
1.-1- re

Optimal sample
allocation across

discretizations and
model forms

= —1+

2
P

1 — p2
where w,e = CIRIF/CliF

1/ 2
2 [LH Var (yr) Cr )

HF *Ne = >
02i

k=0

Sandia
Masi
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Var (yHF)
(1 p2,e  cHF

G. Geraci, E., G. laccarino, "A multifidelity control variate approach for the multilevel Monte Carlo technique," CTR Res Briefs 2015.



Multilevel Multifidelity Sampling Methods
Results on model problem: wave propagation in composites

lo. Rod constituted by 50 layers, two alternated materials (A and B) with constitutive laws

aA = Ki
A 
c + K2 c

2 
, Ki

A 
= 1 and 4 = j es-, U(0.01, 0.02){ 

o-B = Kf E + Kil €2 , Ki,k. = 1.5 and r21 = 0.8

8

7

6

5

P. Uncertain initial static (u(x, t = 0) = 0) pre-tension state:
Erec. 4

a(x)
=

(x — 0.35)(x — 0.25)
if 0 < x < 1/2 3 es, U(0.5, 2)

cT)

3
exp 
(

2 x 0.002 

)

1
( (x — 0.65)(x — 0.75))

if 1/2 < x < 1 2 r•J U(0.5, 6.5)
2

2 exp
2 x 0.002

0. Spatially varying uncertain density: p(x) = i + 0.5 sin (27rx), i r,d U(1.5, 2)

II. Clamped rod as B.C.

28 random variables
Two fidelities, each with 4 discretizations

Nx Nt At

Low-fidelity
21 50 3.6 x 10-3

(GODUNOV)
41

81

100

150

31.8 x 10—

1.2 x 10-3

151 288 6.25 x 10-4

101 200 9 x 10-4
High-fidelity 

(MUSCL)
201 400 4.5 x 10— 4

401 900 2 x 10—4

1001 2000 9 x 10-5

LIJ
co

0.1

0.01

0.001
10

Sande
Mond
laboratories

o 
o

101
201 —
401 —
1001 —
4001

initial condition — —

/

0.2

100 1000

Equivalent HF mns

0.4

10000

Level MLMC MLMF-Yl MLMF-Ql
1\1-e NHF NLF re /4 Nr iivr 1,, /32

0 80029 5960 243178 . 4C7 0.97 '4682 192090 40 0767-
1 6282 2434 12487 4 0.49 1049 13781 12 0 0.83
2 1271 262 3877 14 .82 151 3657 23 0.92
3 212 47 955 19 0.84 34 754 21 0.86

0.6 0.8

100000


