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Common theme across these applications:

» High-fidelity simulation models: push forward SOA in computational M&S w/ HPC
- Severe simulation budget constraints (e.g., a handful of runs)
- Significant dimensionality, driven by model complexity (multi-physics, multiscale)

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned T
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.




Research Thrusts for UQ ) et

* Focus: Compute dominant uncertainty effects despite key challenges

« Emphasize scalability and exploitation of special structure ' m
« Adaptivity: p- and h- refinement of stochastic expansions

» Adjoints: gradient enhancement for PCE / SC / GP

...............

» Sparsity: compressed sensing

* Low Rank: tensor / function train (w/ UMich)

» Dimension reduction: active subspaces (w/ CU Boulder),
adapted basis PCE (w/ USC)

« Compound efficiencies
* Multilevel-Multifidelity with sampling & CS/FT surrogates (new: ROM, NN)
* Active subspaces: subspace quadrature, enhance MF control variates

r = Nhi/Nlo = 6
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» Address complexity w/ component-based approach L. A cssins

« Emulator-based Bayesian inference, Mixed aleatory-epistemic UQ, 2 | T
Optimization under uncertainty (new: Optimal experimental design) |z ©’}
5 10°]

» Position UQ for next generation architectures T TS

Equivalent Number of High-Fidelity Model Evaluations

» Current (imperative): multilevel parallelism (MPI + local async)

* Future (declarative): exploit DAG + AMT for ensemble workflows (w/ Stanford)




“Science Pipeline” Metaphor ) e,

Algorithm Software Production
Research Development Usage
Prototyping Advanced/supervised
(MATLAB, Python, deployments with
lightweight C++ codes) partners/early adopters
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Research & Development in Multifidelity Methods

th

Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy
» address scale and expense for high fidelity M&S applications in defense, energy, and climate
> render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible

A2e wake dynamics

Scra;;'et\h\

SECURE ¢

Emerging mission areas: abnormal thermal, Z-pinch MagLlIF,

quantum chemistry

Monte Carlo UQ Methods

* Production: optimal
resource allocation for
- ltilevelraltifi

* Emerging: active
dimensior 8-E
LDRD), generalized
fmwk for approx
control variates
(ASC V&V Methods)

* On the horizon: control
of time avg; learning
latent var relationships
(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)
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Surrogate UQ Methods (PCE, SC)

* Production (v6.10):

] ML PCE w/ projection &

5 i regression; ML SC w/ 1
nodal/hierarchical interp; "

greedy ML adaptation
144 (DARPA SEQUOIA)

* Emerging: multi-index
stochastic collocation, -
multilevel function train
(ASC V&V Methods)

» On the horizon: new
surrogates (ROM, deep
NN) with error mgmt
(‘19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

Optimization Under Uncertainty

Production: manage simulation
and/or stochastic fidelity

Emerging:
Derivative-based methods (DARPA SEQUOIA)
+ Multigrid optimization (MG/Opt)
* Recursive trust-region model mgmt.:
extend TRMM to deep hierarchies
Derivative-free methods (DARPA ScramjetUQ)
+ SNOWPAC (w/ MIT, TUM) w/
MLMC error estimates

On the horizon: Gaussian process-based
approaches: multifidelity EGO (FASTMath OUU);
Optimal experimental design (OED) (A2e)

Key Challenge: existing ML/MF/MI performance is compelling on (elliptic) model problems, but
significant generalization required for engineering applications with non-trivial model relationships



DARPA SEQUOIA: Hierarchy of Fidelity Levels

Low fidelity model Medium fidelity model
=  Quasi 1D ideal/non ideal = 2D Euler/RANS .
nozzle aero axisymmetric CFD
= 1D heat transfer = 1D heat transfer .
=  Coarse axisymmetric = Coarse axisymmetric .
FEM model FEM model .
= 30 seconds on one core = 5 minutes on one core
(2D Euler)

High fidelity model

3D non-axisymmetric
Euler/RANS CFD

1D heat transfer
Full 3D FEM model

2 hours on 20 cores
(3D RANS, coarse mesh)

Multiple mesh refinements available for Medium & High (ragged ML-MF)



Initial Deployment of MLCV MC to

ZaN
Context: Analysis of performance of UCAV
nozzles subject to environmental, material,
and manufacturing uncertainties.

(a) Coarse

Goal: Explore utility of low fidelity model
(potential flow, hoop stress) alongside
discretizations for medium fidelity (Euler, FEM)

Estimator Variance (normalized)

UCAV Nozzle U

(c) Fine

Sandia

|‘1 National
Iahoratories
Triangles
Coarse 6,119
Medium 29,025
Fine 142,124

TABLE: Number of triangles.

LF MF
= o Coarse 0.016 0.053
2 = = = Medium | N/A  0.253
= Fine N/A 1.0
TABLE: Computational cost.
S Optimal sample allocations based on relative
Ega”_ cost, observed correlation between models,
5 and observed variance distribution across levels
:‘:F'l < Target accuracy LF MF
S Coarse || Coarse | Medium | Fine
= 0.01 21143 1757 20 20
S 0.003 69580 5775 36 20
0.001 212828 || 17715 109 34

00000}




Updated Deployment of MLCV MC to UCAV Nozzle UQ

i\
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LF LF (updated)
correlation | Variance reduction [%] correlation | Variance reduction [%]
Thrust 0.997 01.42 0.996 94.2
Mechanical Stress 2.31e-5 2.12e-3 0.944 89.2
Thermal Stress 0.391 12.81 0.987 03.4
Estimator variance (normal Zfed)
a
S g
R
N = LF Medium Fidelity LF (updated) Medium Fidelity
ceuracy (£7/€o Coarse | Coarse | Medium | Fine Coarse Coarse | Medium | Fine
0.1 N/A | NJA | N/A |N/A 404 20 20 20
0.01 21,143 1,757 20 20 3,091 177 31 20
0.003 69,580 | 5,775 36 20 N/A N/A N/A N/A
0.001 212,828 | 17,715 109 34 32,433 1,773 314 20
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DARPA EQUIPS (Scramjet UQ): =
LES Models for Turbulent Reacting Flow in HIFIRE abortores

Multiscale-multiphysics application of « Provided benchmark LES calculations of the
Large Eddy Simulation (LES) Hypersonic International Flight Research Experiment
(HIFiRE) to support development of UQ

« (Case of interest corresponds to the geometry and
conditions of ground based experiments performed
in the HIFIRE Direct Connect Rig (HDCR)

A hierarchy of unit cases (including high-fidelity LES
of the HDCR) has facilitated UQ tasks and provided
optimal workflow between team members

« Unit cases are designed to emulate key Qols while
making comprehensive parametric studies possible

State of
the Art LES
("P2" Case)

\
\\ Model forms:

Discretizations:




Initial Deployment of MLCV MC for Scramjet UQ th ?t}ldratl

Context: 3D LES simulation of scramjets is extremely expensive and a significant
challenge for UQ; even more so for OUU.

Goal: Demonstrate UQ in moderately high D using only a “handful” of HF simulations,
by leveraging lower fidelity 2D models and coarsened 2D/3D discretizations

UQ Approach: MLCV algorithm described previously.

1

‘MC —+— ]
MLMC ——— | 2D 3D
WLME === d/8 | 564 011
d/16 | 0014 1

TABLE: Computational cost.

elgg
o
T

2D 3D
d/8 | 4,191 263
d/16 68 9

Optimal sample allocations based on relative
cost, observed correlation between models,

i observed variance distribution across levels,
10 100 1000 10000 100000 1e+06 and MSE target (.045 of pilot MSE)
Equivalent HF runs

Optimized allocation: achieve MSE target for 3D LES in 24D using only 9 HF sims. (50 equiv HF)



Updated Deployment of MLCV MC for Scramjet UQ 4L

P1 updated: re-formulate inputs in order to obtain an higher level of turbulence and,

in turn, a more non-linear response of the system

Sandia
National _
Laboratories

Observations from pilot sample: decay in variance across discretizations (LF d/8 and

Table 2: Variance for the five Qols of the P1 unit problem.

discrepancy d/16 — d/8) no longer observed for all Qol

P 0,mean P 0.rms,mean Mmean TKEmearz Xmean
P1
d/8 || 4.02554e-03 | 1.90524e-06 | 1.99236e-02 | 3.34905e-07 | 4.24520e-03
d/16 || 4.03350e-07 | 7.77838e-08 | 6.68974e-05 | 1.74847e-08 | 4.40048e-05
P1 updated
d/8 || 4.05795e-03 | 1.90612e-06 | 1.60029¢e-02
d/16 || 2.85017¢-04 | 7.36978e-07 | 2.07638¢-03 _

Implications: requires more focused analysis of deterministic convergence properties -

Need to engage additional refinement levels (i.e., d/32, d/64) in order to converge Qol

statistics that are closely tied to resolution of turbulence.



11 I Computational Approach

*Low Fidelity: OpenFAST-AeroDyn-Turbsim (https://github.com/OpenFAST)
* Turbsim generates turbulent atmospheric boundary layer flow field, semi-empirical
* AereoDyn models the aerodynamic forces on the rotor

* OpenFAST models the structural and controls response of the rotor (same for Nalu)

' SAND2014-15367M 3
sk o
* Nalu

*High Fidelity: Nalu (https://github.com/NaluCFD) Nalu V1.0

* LES, Solves the Navier-Stokes equations in the low-Mach number
. . . . . Generalized unstructured (CVFEM and EBVC supported) 3
approximation with the one-equation, constant coefficient, TKE  |Eill "
model for SGS, unstructured massively parallel.

Open Source: BSD license has been granteds:

Weak scaling demonstrated to 524,000 core with 10 billion unstructured hex mesh

* Actuator Line model of the rotor

* Single, uniform mesh (no nesting)

Cost estimates for Nalu and OpenFAST simulations.

Case Mesh size Simulation time | CPUs Cost Cost
(seconds) (CPU-hours) | (relative)
OpenFAST 500 1 0.42 1
Coarse 100x50x50 2000 30 240 576
Medium 200x100x100 2000 160 960 2304
Fine 400x200x200 2000 400 6360 16500
Reference | 800x200x200 2000 400 38400 91400

Domino, S. "Sierra Low Mach Module: Nalu Theory Manual 1.0", SAND2015-3107W, Sandia National Laboratories Unclassified Unlimited

Release (UUR), 2015. https://github.com/NaluCFD/NaluDoc




Estimator Performance Extrapolation

12
Given the statistical properties estimated for power and thrust,
we can extrapolate the behavior of several estimators:
¢ Standard MC estimator
« MLMC-3l: Multilevel Qy + (Q; — Qo) + (@, — Q) © MLMC-2I: Multilevel Q; + (@2 — Q1)
« MLMEFE-3l: MLLMC-3] with CV for Q, * MLMF-2l: MLMC-21 with CV for Q4
Power Thrust
100 ¢ L R A | LA R | T T T T T T 10 T L R R A | T T T T T T T
b MC —+— 1 - MC —+— 1
' MLMC —o ] MLMC —e& ]
MLMF —o-— ] MLMF —o — |
MLMC-2| —&— MLMC-2| —&— 1
MLMF-2| — = MLMF-2| — =
3 10} 4 3 u
= : o
9] n
5 § ¢ i
2 1t T {32 o
A
N
=
0.1 ' ' : 0.1 : : '
1 10 100 1000 10000 1 10 100 1000 10000
Equivalent HF simulations Equivalent HF simulations
Power Thrust
MLMC MLMF MLMC MLMF
Level | Nalu | Nalu | OpenFAST | Nalu | Nalu | OpenFAST
0 161 137 2040 181 136 2887

Nalu LES for Q0 was too coarse and non-predictive




Multilevel — Multifidelity Sampling Methods ) e

Cardiovascular flow

Jost Effective Cost
Solver | (1 simulation) | (No. 3D Simulations)

3D 96 hr 1
1D 11.67 min 2E-3
0D 5 sec 1.45E-5

Courtesy of C. Fleeter (Stanford), Prof. D. Schiavazzi
(Notre Dame), Prof. A. Marden (Stanford)

3D Model 1D Model 0D Model

Model relationships / graph topologies Costs to achieve prescribed error tolerance

MLA
HF [ 3D Effective Cost No. 3D No. 1D No. 0D
MEA I MLC MLME Method | (3D Simulations) | Simulations | Simulations | Simulations
HF
[]e—[m] w[w] [sm]w MC 9885 9885 = =
! L MFA 56 21 15681 | -
- s [0]ir, ¥ [10 ] — MFB 39 36 = 154 880
— 1 ILA 305 212 41900 | -
(30 | - MLB 156 150 = 342 060
I MLC 165 156 1324 351940
L MLMF 165 156 1249 362590

(a) Multifidelity (CV) (b) Multilevel (¢) Multilevel-Multifidelity

1D predictivity was insufficient and 0D contribution required control weighting
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Multilevel — Multifidelity Challenges

Key Challenge: existing ML/MF/MI performance is compelling on (elliptic) model problems, but
significant generalization required for engineering applications with non-trivial model relationships

* Do we really know the predictive value of each model a priori?
* Are the dependency relationships clear from the modeling source?
» Conversely, can there be a penalty in greater generality w/ more weights to estimate?

Research directions:

» Generalize: start from a fully-connected, weighted structure
« Compute correlations across full model ensemble

« Optimize: learn latent relationships for an optimized graph representation
» Estimate reduced weight set from finite simulation instances




Multilevel — Multifidelity Sampling Methods i) i

Generalized framework for approx. control variates

For M approximate models, look beyond ——
(recursive) model pairings . 10 o
M -2 _13 ACV-MF
QV =0+ Zai (Qs — m) g 107 ; (K,L)=(1,1)
i=1 g ] (K,L)=(2,1)
- P K,L)=(3,1
C € RM*M . yariance matrix among Q; _% 10 2: EK‘L;=E4‘1; ]
arg min Var [QCV ( g)] :> c € RM vector of covariances between Q %: 10_35
a . _1 = i_0CV-2 o 4
o' =C e 4 7
E 104 _ocv-3 ]
Simple Monomial Example 1 ocv ko, RSARRNIN
] MLMC 10-51— . ; .
10°4 MC -- —%— Opt-MLMC - 0 10 20 30
g ] / cosadacia MLMC
9 1 100 1N - —%— Opt-MLMC -
= 1071, & MFMC
o ] OCV-1 v e, 3 g ®—9—9| |—— ACVKL
g 10 s 3 ]
ks - g 1072 -
i 1 o ]
8 107 peve - ]
% ] g 10—3_
X S 1 ocv2
< —4 <
= 10 OCV-3 t
2 1044 _ocvs
N ot o o i e e i
& ocv . SIS -
e 10 20 30 1075 ' - -
- 0 10 20 30
x,so0 that r; = 2'™ z,s0 that r; = 2+=

A. Gorodetsky, G. Geraci, E., J. Jakeman “A Generalized Framework for Approximate Control Variates,” arxiv.org/abs/1811.04988



Multilevel — Multifidelity Sampling Methods rh)

Generalized framework for approx. control variates

For M approximate models, look beyond
(recursive) model pairings

QCV =Q+§:ai (Qz —Hi)
i=1

C € RM*M  qyariance matrix among Q;
arg min Var [QCV (Q)] :> c € RM yector of covariances between Q@ and each Q);
a

a* = Cle

Simple Monomial Example

] MLMC
100 +-M< - —— Opt-MLMC
g ] / MFMC
Z 1014 g
- \ QCV-1 - =
% 10—2; YU AWM. T Er S - rFF TR T s E T I I IR :5
= 1 [~
- 5
o 10-3. £
g 1071 ocves 5
.g ] £3)
3 1044 _ocv3
L OCY e ] R
10~ 1— : : : P P L1
0 10 20 30 102 103 104
&, w0 fhak v, = 3 Target Cost

A. Gorodetsky, G. Geraci, E., J. Jakeman “A Generalized Framework for Approximate Control Variates,” arxiv.org/abs/1811.04988v3



Generalized framework for approx. control variates (i) i
Tunable model problem
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A. Gorodetsky, G. Geraci, E., J. Jakeman “A Generalized Framework for Approximate Control Variates,” arxiv.org/abs/1811.04988v3



Generalized framework for approx. control variates ()

Laboratories

Two dimensional elasticity in heterogeneous media

Hyperbolic system:

elastic wave propagation in 2D
1 1 T LI T 0
8
0.75 6 075
05 2 05 05
025 2 025 | 4
0 0 0r
025 2 025 K
05 4 05 | -
0.75 ® 0.75 |
-1 b -1 e -25
-1 -0.75-05-025 0 025050.75 1 -1 -0.75-05-025 0 02505075 1
(a) Trace of the stress tensor. (b) VClOClty u component. T 107505025 0 02505075 1 107505025 0 02505075 1 107505025 0 02505075 1 1 07505025 0 02505075 1 A -o..mo..salzs 0 olzs ol.5 o.l75 1
q: + Aqx + Bqy, =0
Well correlated General multifidelity
discretization hierarchy : with model gaps
1073 = 103 =
8 1073 . g 107 g 10
: \ — Ao § \ E
g 10-5{ T~ 5 107 TSy g 107
A s —= 3= 3 10794 = % 10-8
107 w07 (1l

102 10° 10° 10° a 10° 10°
Target cost Target cost Target cost

A. Gorodetsky, G. Geraci, E., J. Jakeman “A Generalized Framework for Approximate Control Variates,” arxiv.org/abs/1811.04988v3
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Emphasis on Scalable Methods for High-fidelity UQ on HPC

Compounding effects:

* Mixed aleatory-epistemic uncertainties (segregation - nested iteration)
* Requirement to evaluate probability of rare events (resolve PDF tails for Qol)
* Nonsmooth Qol (exp conv in spectral methods exploits smoothness)

Steward Scalable Algorithms within )>

DAKOTA

0.8
8
0.6 6
"4
S _ 2
0.2 - 05
_ . 0.0
0.0 05 -

D'%.D 02 04 06 08 10

Explore and predict with confi

Core (Forward) UQ Capabilities:
« Sampling methods: MC, LHS, QMC, et al.

dence

* Reliability methods: local (MV, AMV+, FORM, ...),

global (EGRA, GPAIS, POFDarts)

» Stochastic expansion methods: PCE, SC, fn train

Model
Parameters

DAKOTA

Optimization

Uncertainty Quant. |
Parameter Est.
Sensitivity Analysis

Commercial simulation codes
Library mode (semi-intrusive):
ALEGRA (shock physics),
Xyce (circuits), Sage (CFD),

Black box:
Sandia simulation codes

Quantities
of Interest

Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter,
SIERRA (multiphysics)

« Epistemic methods: interval est., Dempster-Shafer evidence

samples =5

08

06

04

Expected
Improvemen

2 4 6 8 10 12
R=> a;¥;(€)

PI(>Y) or P(>Y) or Bel(>Y)

0* L L 1 1 | |
06 08 10 12 14 16 18 20 22
Y



Multiple Model Forms in UQ & Opt ) i,

Discrete model choices for simulation of same physics

Potential Flow

A clear hierarchy of fidelity (from low to high)

« Exploit less expensive models to render HF practical
» Muiltifidelity Opt, UQ, inference

» Support general case of discrete model forms
» Discrepancy does not go to 0 under refinement

An ensemble of peer models lacking clear preference
structure / cost separation: e.g., SGS models
« With data: model selection, inadequacy characterizatior
 Criteria: predictivity, discrepancy complexity
» Without (adequate) data: epistemic model
form uncertainty propagation
* Intrusive, nonintrusive
» Within MF context: CV correlation

Potential Flow

Reynolds ‘One- m ‘Revnolds
Averaged Navier- equation equation '
Stokes (RANS) RANS model RANS model
» ke

Hybrid
RANS/LES

Discretization levels / resolution controls
» Exploit special structure: discrepancy = 0
at order of spatial/temporal convergence

Simulation

ANPPL] [PPOJAl Surseddu]

Large Eddy
7 Simulation (LES)

Combinations for multiphysics, multiscale




Simple demonstration of key ML-MF concepts )
Monte Carlo Sampling: MSE for mean estimator

Problem statement: We are interested in the expected value of Qy = G(Xjpr) where

» M is (related to) the number of spatial degrees of freedom

» E Q] EH—OOHE[Q] forsome RVQ: Q2 — R

Monte Carlo:

two sources of error:

» Sampling error: replacing the expected value by a (finite) sample average

» Spatial discretization: finite resolution implies Qy ~ @

Looking at the Mean Square Error:

E (@M% — E[Q)?| = N"'Var (Qu) + (E[Qy — Q))*

Accurate estimation = Large number of samples at high (spatial) resolution




Simple demonstration of key ML-MF concepts i

Multilevel MC: decomposition of estimator variance
Multilevel MC: Sampling from several approximations @y of @ (Multigrid...)

Ingredients:

> {M,:¢=0,..., Lywith My <M; <--- <M., ¥M

» Estimation of E [@7] by means of correction w.r.t. the next lower level

L L
def li 15
Ye = Qu,—Qu,_, —— E(Qu] =E [Qu,]+ D E|Qu, — Qu,_,| = > _E[Y/]
» Multilevel Monte Carlo estimator

G defZ = Y 2( Q)

» The Mean Square Error is

L
E (@ —EQ)?] =Y N, 'Var (¥o) + (E[Qu — Q))°
(=0

Note If @37 — @ (in a mean square sense), then Var (Y,) L3 p




Simple demonstration of key ML-MF concepts i) .
Multilevel MC: optimal resource allocation

Let us consider the numerical cost of the estimator

L
c(@f") => N
£=0

Determining the ideal number of samples per level (i.e. minimum cost at fixed
variance)

j N
C(@") =D N
£=0 Lagrange multiplier 2 - 1/2 Var (Yg)
L 4 > Ng = 5 Z(Var(Yk)Ck) —————
£ E—0 Cg
> "N, 'Var (Y;) = £%/2
- ) \ ' J\ ' J
‘ Y ' Level Level
Balance ML estimator variance independent dependent
(stochastic error) and residual : ;
bias (deterministic error) |
- don’t over-resolve one at Optimal sample profile

the expense of the other

M. Giles, “Multilevel Monte Carlo path simulation,” 2008.



Research & Development in Multifidelity Methods
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Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy
» address scale and expense for high fidelity M&S applications in defense, energy, and climate
» render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible

Y

“Ucava
Nozzle

E.

Scra;'et\g\

AZ2e wake dynamics

SECURE ¢

Emerging mission areas: abnormal thermal, Z-pinch MagLlIF,

quantum chemistry

Monte Carlo UQ Methods

* Production: optimal
resource allocation for
multilevel, multifidelity,
combined (DARPA
SEQUOIA/ScramjetUQ)

* Emerging: active

dimensions (18 EE | -

LDRD), generalized
fmwk for approx
control variates
(ASC V&V Methods)

* On the horizon: control
of time avg; learning
latent var relationships
(CIS LDRD); model
tuning / selection
(CIS LDRD, DOE BES)

s et

400004 0000} ool

ol

g

Estimator Variance (normalized

100

Lt — Emerging: multi-index
e tochastic collocation . -
e multilevelfunction train =
o - (@
3 wo
S (.20 )

Surrogate UQ Methods (PCE, SC)

* Production (v6.10): i
ML PCE w/ projection &
regression; ML SC w/
nodal/hierarchical interp;
greedy ML adaptation

DARPA SEQUOIA "o

=1l

(ASC V&V Methods)

Il

* On the horizon: new
surrogates (ROM, deep
NN) with error mgmt
(19 EE LDRD, DOE BES);
unification of surrogate
+ sampling approaches
(CIS LDRD)

Optimization Under Uncertainty

Production: manage simulation
and/or stochastic fidelity

Emerging:
Derivative-based methods (DARPA SEQUOIA)
« Multigrid optimization (MG/Opt)
* Recursive trust-region model mgmt.:
extend TRMM to deep hierarchies
Derivative-free methods (DARPA ScramjetUQ)
+« SNOWPAC (w/ MIT, TUM) w/
MLMC error estimates

On the horizon: Gaussian process-based
approaches: multifidelity EGO (FASTMath OUU)




. . Sandia
Surrogate approaches: Greedy multilevel refinement (Y e,

‘QL ~ Qo+ Y AL for Ay = 01— 01

Compete refinement candidates across model levels: max induced change / cost
* 1 or more refinement candidates per model level

* Measure impact on final Qol statistics (roll up multilevel estimates)
* norm of change in response covariance (default)
* norm of change in level mappings (goal-oriented: z/p/f/3*)
normalized by relative cost of level increment (# new points * cost / point)

« Greedy selection of best candidate, which then generates new candidates for this model level

Level candidate generators:

* Uniform refinement: 1 exp order / grid level candidate per model level e
« Tensor / sparse grids: projection PCE, nodal/hierarchical SC B
* Regression PCE: least squares / compressed sensing

* Anisofropic refinement: 1 exp order / grid level candidate per model level

— N W = Ut

« Tensor / sparse grids LR R

* Index-set refinement: many candidates per level ! . | [
* Generalized sparse grids: projection PCE, nodal/hierarch SC |
* Regression PCE

* Adapted candidate basis: ~3 frontier advancements per model level e

* Regression PCE (Jakeman, E., Sargsyan, “Enhancing £1-minimization estimates of
polynomial chaos expansions using basis selection,” J. Comp. Phys., Vol. 289, May 2015.)
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Multilevel / Multi-index PCE: greedy competition across models

Greedy ML PCE:
Greedy ML PCE: uniform CS uniform / generalized SG Greedy multi-index PCE

-2

10

I single level 10° ) ) - —
3 Al rGe O3 ey <10 S L
=MLPCE CS 5 level =1 10 | . <O~ Greedy ML PCE Uniform SG 5 level |} % o
\ ~MLPCECS5levelk =15 - 0O~ Greedy ML PCE GSG 5 level . " e
10} . +4>~MLPCECSS5levelk=2 || . .
<] ~MLPCE CS 5 levelx = 3 16 b 1024 . :
+ 40 = Greedy ML PCE CS 5 level P e 2
& '\,_ L
107° 2 L
8 107} 5 A W &
T 10, '\ 3
: : - - ([3]02)
8 3 10° - == ([0, 1, 2, 3][0, 1, 2]) - -
210’} 2 == (412D
1o 10-4] === (0.1.2.3.40.1,2)
e ([52) H
100l 3 107 —e— ([0, 1,23, 4,50, 1,2) @ '
& 103 107! 10! 10°
1077¢ Work
o 1(I)‘ 12)2 1£)5 10 10710‘ 1;)2 1[-]3 1;)" 1£)5 10° o
Equivalent HF Simulations Equivalent HF Simulations
o
[ComvTol | N, | Ny| Ns| Ny| Ns] '
Conv Tol ‘ Ny ‘ Ny ‘ Ny ‘ Ny ‘ Ny ‘ l.e-2 43 28] 19 197 19)4 = = _@
led| 211| 83| 19/ 19| 19/2 |
Le-1 | 198 91 9, 9 9 Le6| 391| 271 | 156| 19| 197 : e
1.2 644 198 9 9 9 1l.e-8 | 1359 743 | 327 59 19 3 - - i, -
l.e-10 | 3535 | 2311 | 1039 | 391 19 - » 357
kel B e &) &) B Le-12 10310 | 5783 | 2783 | 1343 | 43| i MMlm HHe Hew ) 5 = Ui Q.-
le-4 | 4505 | 1802 | 50 | 9| 9 le-14 | 26655 | 14991 | 8063 | 3703 | 1535 el hplas s i | ) "
(o, )
104 7 2




SWIFT Site Experimental Uncertainty Quantification

®* Inflow Measurements

a

P

P
RH

-
Tl (sonic)

U (sonic)

V (sonic)
WD (sonic)

= Turbine Measurements

Aerodynamic power -

Rotor speed

Aerodynamic torque

Rotor thrust

Individual blade root loads

Yaw heading

Yaw misalignment

Blade pitch
Rotor azimuth

Nacelle acceleration

= \Wake Measurements

DTU Spinner Lidar

Wake identification
and tracking

Turbulence
estimators

Ranges for uniform distributions of the three

uncertain variables considered in this study.

Uncertainty | Mmimum | Maxmimum
Speed 6.5 m/s 7.5 m/s
Density | 0.97 kg/m* | 1.19 kg/m?
Yaw -25° 25°




Multilevel — Multifidelity Sampling Methods

4. Solid

Cardiovascular flow
1. MRI 2. Pathlines 3. Segmentation
E.‘

.,m‘f':‘f, o

Effective Cost

i P

52 i

L g Jost

' oA Solver | (1 simulation) | (No. 3D Simulations)
R _— i N}N%?L 7
Z -] e il 96 hr 1
I w3 1D 11.67 min 2E-3

L o 0D 5 sec 1.45E-5

0D Model

3D Model 1D Model




Multilevel — Multifidelity Sampling Methods

Cardiovascular flow

Model relationships / graph topologies

MLA
HF | 3D
MFA
I MLC
(][] [w] “F
(o |e=[oo] " T [o0 15,
e [o0]

(a) Multifidelity (CV)

(b) Multilevel

(¢) Multilevel-Multifidelity

Costs to achieve prescribed error tolerance

Effective Cost No. 3D No. 1D No. 0D
Method | (3D Simulations) | Simulations | Simulations | Simulations
MC 9885 = ==
MFA 56 -
MFB 39 = 154 880
MLA 305 41990 -
MLB 156 = 342 060
MLC 165 1324 351940
MLMF 165 1249 362 590

Implies need for not presuming a fixed topology...




Sampling Methods: Classical Control Variate > Multifidelity MC

A Control Variate MC estimator (function G with E [G] known)

Q%CCV _ Q?VIC .5 (G%C —]E[G])

. X 1/2 (@ X X
argémnVar (Q%CCV) — B = —pijilm EG; Var (Q%CCV) = Var (Q%C) (1 — pz)

In our context, G is a low fidelity approximation of Q and its expectation is not known a priori

Let's modify the high-fidelity Qol, QﬁIJF to decrease its variance

Qﬂ?ﬁcv = QI%FTN + (Qlll‘d’F,N —FE [Q}}FD ‘ = (QII‘EVCV> = (QL}F) (1 - LP}%{L)

1+r
MFMC cost relative to MC

additional and independent set ALF — rNHF o.; R —
0.8 \\\\\\ E
8 07 ; e
Minimize CV estimator variance - control param. as before: 3 06 \\\ \\ -
. s 05 = g9
dVar (QII;IIFMF) Varl/2(QHF) g o4 \\\\ o §Z —
. _ S 03 . — | 16—
do =t = = pVar1/2(QLF) " N\ e —
- 2 0.1 \\ Bl - 75 FUES— §Z§ —
i i y i L ] —— T o —
Minimize total cost = optimal sample ratio: r* = -1 + 1uipp2 ° s i i

Pasupathy et al., 2012; Ng and Willcox, 2014; Peherstorfer, Willcox, & Gunzburger, 2016; et al.



Sampling Methods: ) e,

Combining ML and CV for multidimensional model hierarchies

» OUTER SHELL — Multi-level

HF < HF L HE
E|Qif | =D E[Yi"| =31
=0 =0
» INNER BLOCK — Multi-fidelity (i.e. control variate on each level)

Yyt =Y + o (V¥ —E V7))

» Cost per level is now Cﬁq = CEIF — C}‘F (14+ryp)

» the (constrained) optimization problem is

in (£ h .c—LmNHFceq A 1 Var (YHF) A 2/9
NZI-IJEFTA( ), where —g} e Cp +. (;)W m"(g ) E{rf}—s/')
ry
> Af(rf)Il—Pil+r£
i
Optimal sample | ,z — where w, = ¢ /cbF

allocation across J

discretizations and

Lur [ vVar (YHF ) cHF e Var (YHF)
HF, o 2 e ‘e i E
model forms [ ~5,"* = | 3 ( = ) Ay (1 = Pﬁ)—C?F

G. Geraci, E., G. laccarino, “A multifidelity control variate approach for the multilevel Monte Carlo technique,” CTR Res Briefs 2015.
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Multilevel — Multifidelity Sampling Methods ) Ntona
Results on model problem: wave propagation in composites

8 T T
» Rod constituted by 50 layers, two alternated materials (A and B) with constitutive laws 2l %é)i E l\‘
op =Khe+ KA, KA=1 and KA =¢ & ~U(0.01,0.02) 1001 — i
B 5 & % B initial condition = = roy
op=Kje+Kye", K; =15 and K; =0.8 5| L
» Uncertain initial static (u(x,t = 0) = 0) pre-tension state: g . : !
; _Em08)E=0)Y L e 052 24 ¢
i 3eXp< 2 x 0.002 ) i el e 3l .
R " _E08)G =0T L e w0565 i ; \
ZeXp( 2 x 0.002 ) ' ) pREl | /N ; ‘
» Spatially varying uncertain density: p(x) = £&1 + 0.5sin (27x), §; ~ U(1.5, 2) - . 3 5 o AN
» Clamped rod as B.C. 0 0 0.2 0.4 0.6 0.8 1
. ‘ | | s
28 random variables o Wl
Two fidelities, each with 4 discretizations
Nx Nt At 0.1 7
—3 *
Low-fidelity 21 50 3.6 X 10_3 )
(GODUNOV) 41 100 1.8 x 10_3 8
81 150 1.2 x 10
151 288 | 6.25 x 10~* oot | |
7
High-fidelity || 1 | 200 | 9% 10,
(MUSCL) 1 o Y
401 900 2 x 10
1001 | 2000 9x107° - . y .
10 100 1000 10000 100000
Equivalent HF runs
Level MLMC MLME-YI MLMF-QI
N, NIEF N‘E‘F NfF N%F
0 80029 5960 | 243178 4682 | 192090
1 6282 2434 12487 1049 13781
_ 3 212 a7 966 19 34 754 21 _




