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Protection for the Electric Grid Project Objectives

Peak E Field, Incident E1 HEMP
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J. S. Foster Jr. et al., “Report of the Commission to Assess the Threat to the United States from Electromagnetic
Pulse (EMP) Attack: Critical National Infrastructures,” Defense Technical Information Center (2008).
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Vertical GaN Technology Project Objectives

A > Extend the limits of vertical GaN power
device technology
n" drift region * Increase Vg by 4x from today’s SOA

« Challenges: Thick drift region, low

_ net doping, edge termination
7 | > Establish a domestic foundry process for

I (nA)

Ohmic metal vertical GaN power devices
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A. Armstrong et al., Elec. Lett. 52(13), 1170 (2016)
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Epitaxy and Doping

Breakd
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_ Punch-Through Non-Punch-Through
own Voltage [kV] for GaN with Ec =4.0 MV/cm 25
‘ , WDrift < WDep
Wit > W gep region
(non-punch-through) E
' 20 ¢ A

Project Objectives
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Wit < W gep region pt+ n- n+ pt n- n+
(punch-through)
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br C DTlft 2“3 br ZqND
Need Nj = low-10*> cm3, W, = 50-100 um for 20 kV breakdown
Optimal unipolar FOM achieved for W, = 3V/2E,
3
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Epitaxy and Doping

Project Objectives
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M. P. King et al., Applied Physics Letters 109, 183503 (2016)
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Epitaxy and Doping Project Objectives
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* Small response from E. — 2.14 eV level, N;~ 3x1013 cm™

M. P. King et al., Applied Physics Letters 109, 183503 (2016)
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Epitaxy and Doping Project Objectives
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* Small response from E. — 2.14 eV level, N;~ 3x1013 cm™
* E.—2.88 eV level is the primary compensating defect, N; = 2x10%> cm3

M. P. King et al., Applied Physics Letters 109, 183503 (2016)



Epitaxy and Doping Project Objectives
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* Small response from E. — 2.14 eV level, N;~ 3x1013 cm™
* E.—2.88 eV level is the primary compensating defect, N; = 2x10%> cm3
* E.—3.20 eV level is a secondary compensating defect, N; = 5x10'4 cm3

M. P. King et al., Applied Physics Letters 109, 183503 (2016)



Edge Termination Project Objectives
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Fast Avalanche Response

Project Objectives

» Will quantify breakdown physics, including time response

* Avalanche ruggedness is key — avalanche breakdown previously

demonstrated, but need to better understand physics
* Existing reverse-recovery test system will be upgraded to measure
time response of avalanche breakdown

M. P. King et al., IEEE TNS
62(6), 2912(2015)
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O. Aktas and I. C. Kizilyalli, IEEE EDL 36(9), 890 (2015)
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Normalized signal

D. L .Mauch et al., IEEE TPE

32(12), 0333 (2017)

...plus reflected pulse
from the diode

: —0mA
047 Reflection coefficient: | | 1 mA
Diode is initially a 5 mA |
0.2 short (forward bias) —10mA
and at long times is an 25 mA
0 open (reverse bias) 50 mA |
—100 mA
0.2 x . x 1
-5 0 9 10 15 20 25
Time (ns)
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Substrate Characterization Project Objectives
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Goal: Non-Destructive, Wafer-Scale Mapping Technlques for Rapid Screening
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Substrate Evaluation

As-Received Wafer Spec

Sample ID | BOW (um) Resistivity Offcut
A -12 Not supplied -0.39°tom
B -5 19 mQ-cm 0.5°
C 80 Not supplied 0.65°
0.3°tom
D 8 1 mQ-cm
Otoa
White Light Raman Spectroscopy
Interferometry

Extracted from Detailed Characterization

Project Objectives
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A 25.9 nm 0.217 nm 0.377° 10 -10 cm 6.6 um 54" Large Polishing Roughness 7:25 567.5+/-0.2 3.58 +/-0.06
Inhomogeneous
B 22.7 nm 0.323 nm 0.487° Inhomogeneous 23 um 90” Conductivity 1163 568.1+/-0.1 5.8+/-0.2
C 37.0nm 0.389 nm 0.081° < 1017 cm 3 Large 179" Grain Boundary Defects 41 567.2+/-0.1 4.6+/-03
D 0.85 nm 0.128 nm | 0.503° >10”em”® 3.8um Stress Cracks 0.097 | 567.0+/-0.1 3.46 +/-0.08

Photoluminescence/SIMS

Vendor A
$$%

Vendor B

-Large Long Range
Roughness
0.217 nm-25.9 nm

-Amorphous Ridge
and V Defects

-Uniform Raman May

-Inhomogenous
Conductivity in plane

-Blue Band Luminescence
(C, Mg, or Zn Defects)
-PL Similar To Epi Layers
-Insulating Ridges at
Orange Spots

-Low Vacancy and C

complexes concentration

Vendor C
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-Polycrystalline Grain
Boundaries
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Significant variation at all scales - within wafer,
wafer-to-wafer, and vendor-to-vendor
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J.C. Gallagher, et. al. J. Cryst. Growth 506, 178-184 (2019)

(Don’t Waste Your Grower’s Time!l!)




Pilot Production

at NRL/NIST

Incoming Wafers

Evaluation at NRL
(Pasleall)

Metrology at NIST

Hg Probe

Raman

PL spectrum/map
PL image/map

Zygo

Hg Probe
Zygo

Device Cross-Section (~1 mm?)

 smmE e
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p- GaN
;\ =27
Isolation GR
implant implant
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N+ GaN
n-ohmic
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Fabrication

Project Objectives

Testing/Reliability

NRL

PCM evaluation
Short loop process
development

NIST

Multi-wafer runs with
established process flow
Mid-process metrology
and PCM test (Pass/Fail)
Target 4 wafers/month

NRL

* Electrical test, wafer
mapping, yield analysis
(Pass/Fail)

 EL imaging to study
termination performance

+ Select parts to be
packaged for reliability
testing

+ EL imaging before/after
reliability and stress
testing

External
* lon implantation EDYNX
* Wafer thinning « HTRB/HTOL
+ Packaging
Tools at NRL
MDC Hg Probe
Heidelberg MLA150 Tools at NIST
Temescal E-beam Four Dimensions Hg probe Denton Sputter Deposition
AJA Sputterer Heidelberg MLA150 Oxford CI-ICP
Oxford CI-ICP ASML Stepper PlasmaTherm PECVD
Oxford PECVD Denton E-beam Evaporator

©




Device Characterization Project Objectives

Wafer #1 Forward |-V (linear) Forward |-V (log) Reverse |-V (loa)
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B - > 100w Metrics: . -
+  Forward Current (>500 A/cm?) +  Significant variation at all scales -

= OK (L1goov > 1 UA) . ON-Resistance (<1.3 mQ-cm?) within reticle, wafer-to-wafer...

+  Turn-On Voltage (<3.5 V) *  Quantify yield using auto probing for
- = Good (l.1900v < 10 NA) - Leakage Current (<1 mA/cm?) wafer-scale mapping and data

«  Breakdown Voltage (1.2 > 3.3 > 6.6 kV) analysis
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Breakdown Analysis / FA

Wafer #1 - Unoptimized design

Project Objectives

Wafer #2 - Improved termination

« High field at corner of device .
» Large spread in BV across die
* Dominated by localized defects *

=)

NRL Vacuum Probe Station

* Hyperspectral Imaging

« 20 KV test capability

« 250 -1000 nm imaging range, 2 nm resolution

« Broadband and Monochromatic Imaging modes
« Wavelength sweep capability to extract spectra

CQirpC-e
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Uniform field spreading along
edge of device

LV —
Laxao® -

,ﬂ-\zmnfs s
z; ‘;m‘jwﬂ& E ’
%i l Broadband
% 8000/ -
%é 6000 o B #;glmxﬁ o

A000 1

2000

e] L 4L & L) £,
400 500 600 700 800 900 1000
Wavelength {nm))

aypeispectldil Inaygiinyg ol GdiN nevi s

11

Tight grouping of BV across die



Reliability Evaluation and

. . Project Objecti
Failure Analysis A assinamy

Reliability evaluation helps shorten the product development
cycle even when employed during early stages

R eeewe o pode

Methods Used:

Short-term stability Foundry process and
Step-stress

Failure analysis reliability test / FA
Reliability lifetime evaluation integrated in tightly-coupled

Failure-mode identification cycle for fast learning
Failure analysis

Qi Ql)\.i"e 12
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Reliability and FA Capabilities Project Objectives

> Reliability analysis
* Short-term stress
« Step-stress
* Long-term HTRB, HTOL
* Lifetime estimation
> Failure analysis
 Decap
- DFIB, SEM, TEM, EDX, EBIC
* Emission microscopy van Meerbeek et al., o~
. AFM, XPS, P|_, CL ISPSD 2012 s
» Packaging |
* High-voltage, high-current packaging
> Test and stress capabilities
« Upto20kV DC,100ADC
 Time monitoring of long-term transients (> 100 ms)
* High-temperature ovens (150 C)
» Cooled oil bath for HTOL stress
* Parametric testing (packaged parts — DC and pulsed)

QirpQa-@ 14
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GaN PN Diode Reliability Project Objectives

» Known factors:
« Substrate type (HVPE GaN vs others) [1]
» Substrate supplier [2]
« Current-induced diffusion of H [3]

> Possible factors (extrapolated from HEMTs):

Reveme Ledage

Iz-Vg curves for all diodes on a

e TDDB-like effects in GaN [4] wafer reveal outliers and trends [1]
. . Wafer.map. of IR shows
* Interaction of contacts with GaN surface pcﬁfﬂi !}2': r;%yw[?f]er
under bias and/or temperature [5] R -

Fail =Substrate | ﬂ g

 Dynamic effects [6] -
* Hot-electron effects [7] H

T

Statistical analysis of

> Proposed plan ' ﬂ ’ i | L5 01 | i increase ip IR after
- Start with evaluation of existing devices -~~~ =~ = orerdbassiesl
o Establish baseline condition and ——
. [1] Kizilyalli et al., IEEE TED 62(2), 414 (2015)
range Of behaV|0r [2] Travis Anderson, private communication

o Establish Wafe r-sort limits [3] Fabris et al., Microelectronics Reliability 88, 568 (2018)

. [4] M. Borga et al., IEEE TED 64(9), 3616 (2017)
¢ PaCkage and teSt deVIceS [5] D. Marcon et al., Microelectronics Reliability 52, 2188 (2012)

o 1.2,3.3,6.5kV [6] D. Bisi et al., IEEE TED Oct. 2013,

[7] Brazzini et al., IEEE TED 64(5), 2155 (2017)
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Device Progression Project Goals

~ V=W~ —
QPG @ 5
CHANGING WHAT'S POSSIBLE



Year 1 Technical Milestones Project Goals

2 Complete setup of reliability testing capability suitable for
6.5 kV diodes. Test system using existing 1.2 kV diodes.

3 Demonstrate controllable n-type doping in a > 30 um
thick epitaxial GaN layer on a GaN substrate suitable for
a 5 kV diode. Concurrently develop epi for 1.2 kV diode
to be processed in foundry.

3 Evaluate edge termination approaches based on
numerical simulation and compatibility with processing
capability. Down-select to best design and optimize for
1.2 and 5 kV diodes.

4 Modify existing reverse-recovery setup to characterize
fast avalanche response. Test system using existing 1.2
KV diodes.

Early setup of unique testing capabilities, coupled with development
of epi/processing suitable for high-voltage diodes, are key

CQirpC-e 16
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Initial Device Metrics Project Goals

'Metric | Value (NRL/NIST, Q5) | Value (Sandia, Q6)

Breakdown voltage = 1.2 kV =5 kV

Area > 1 mm?2 > 1 mm?2

Yield = 50% (= 1 wafer/lot) NA

Forward current > 500 A/cm? > 330 A/lcm?

density

Differential on- < 1.3 mQ cm? < 7.7 mQ cm?
resistance

Turn-on voltage <3.5V <3.5V

Leakage current <1 mA/cm? @ 80% of < 1mA/cm? @ 80% of
density rated Vg rated Vg

Will establish device designs and processing
capability in year one to meet these goals in year 2
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Team Structure Team

Sandia ‘ U.S.NAVAL \
National Erene

Laboratories LABORATORY

Cifbljﬂf@ 18

CHANGING WHAT'S POSSIBLE



Bob Kaplar —
Pl, Power
devices

Andy
Allerman —
Epitaxial
growth

Brendan
Gunning —
Epitaxial
growth

Device

@A | processing and

test

QrPG-@
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Greg Pickrell —

Mary Crawford —
Device
processing and
test

Andy
Armstrong —
Defect
spectroscopy

Jeramy
Dickerson —
Device design

Andrew Binder —

Device design

Team

Jack Flicker —
Grid
applications

Jason Neely —
Grid
applications
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NRL/NIST Team

Marko J. Tadjer — Device processing

Andrew D. Koehler — Electrical
testing, failure analysis

» Postdoctoral Fellows: James Gallagher and Mona Ebrish — Electrical
testing, failure analysis

« PhD Student (NPS): Matt Porter — Failure and breakdown analysis

Qe 20

CHANGING WHAT'S POSSIBLE



Stanford / EDYNX / Sonrisa Team

Srabanti Chowdhury (Stanford) — Device
design, processing, and breakdown
analysis

Ozgur Aktas (EDYNX, Sandia
subcontractor) — Reliability testing and
failure analysis

Jim Cooper (Sonrisa, Sandia
subcontractor) — Device design

& 'pleH(C 21
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Commercial Objectives Technology-to-Market

» Project will mature fast MV grid protection devices
« Will fill a gap in protection against fast E1 EMP components
« Other MV protection applications (e.g. MO V replacement)
* Potentially can save the cost of a major grid failure
» Foundry process
« Establish key building blocks in first steps towards a
domestic commercial vertical GaN foundry
* Will encourage small companies to invest in vertical GaN
technology
« Will help increase demand for GaN substrates, improving their
availability, quality, and uniformity, and reducing their cost
« Eventual parity in substrate and processing cost with SiC will
achieve lower costs for vertical GaN, due to area scaling
resulting from higher critical electric field

P
S TRPIOUC
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Conclusions

» Project will advance the state-of-the-art ion vertical GaN devices
« 20 kV breakdown is 4x higher than today’s SOA
 Immediate target application is MV grid protection
« Establishment of foundry process will make key baseline
processes reproduceable and accessible, reducing costs and
accelerating technology adoption
» Key challenges
« Thick, low-doped GaN epitaxial layers are a key challenge and
require expertise and investment in fundamental growth and
doping/defect physics
 Design and processing of edge termination structures will
also be a key challenge
* Reliability characterization and failure analysis will be closely
coupled with foundry process in iterative learning cycles
» Solutions will leverage broad expertise of the team

P
S TRPIOUC
CHANGING WHAT'S PO

IBLE



