

Sandia
SAND2019-6736PE
National Laboratories

Autonomy for Hypersonics

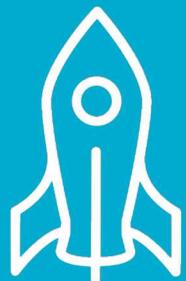
PRESENTED BY

Dr. Alex Roesler

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

- Hypersonics 101
- Autonomous Systems for National Security
- Autonomy for Hypersonics
- AutonomyNM

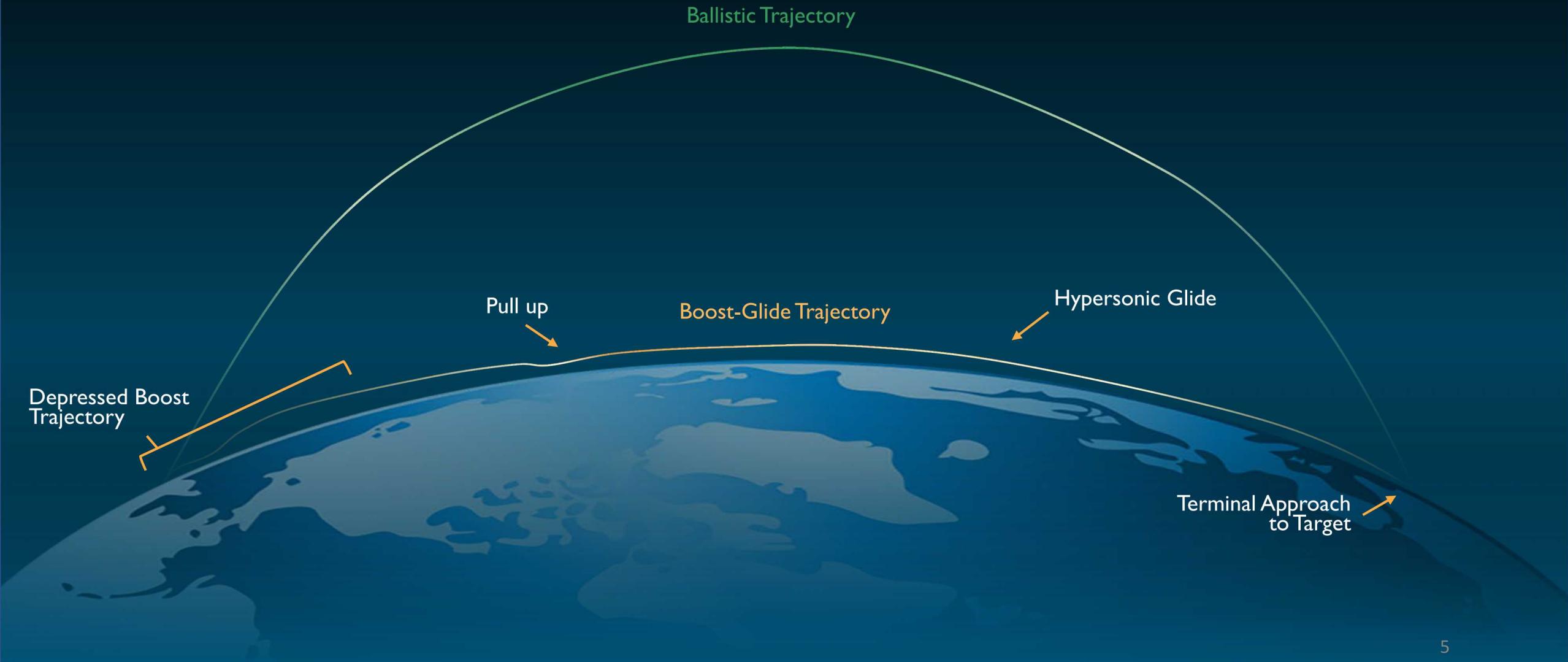

Hypersonics 101

- Hypersonic is defined as five times the speed of sound, which is generally considered to be the point at which aerodynamic heating becomes significant.
- The speed of sound is about 750 mph* or about 1000 feet per second*.
- A mile is 5280 feet, so the threshold for hypersonic flight is about a mile per second.
- The speed of sound is the basis for a unit called Mach Number.
- Advanced fighters fly at about Mach 3; the SR-71 flew about Mach 4. The fastest human-piloted aircraft (X-15) achieved Mach 6.7.
- For reference, earth orbital velocity is about 25,000 feet per second and provides an upper limit to the hypersonic flight regime.

* At flight altitude

Engineering Challenges

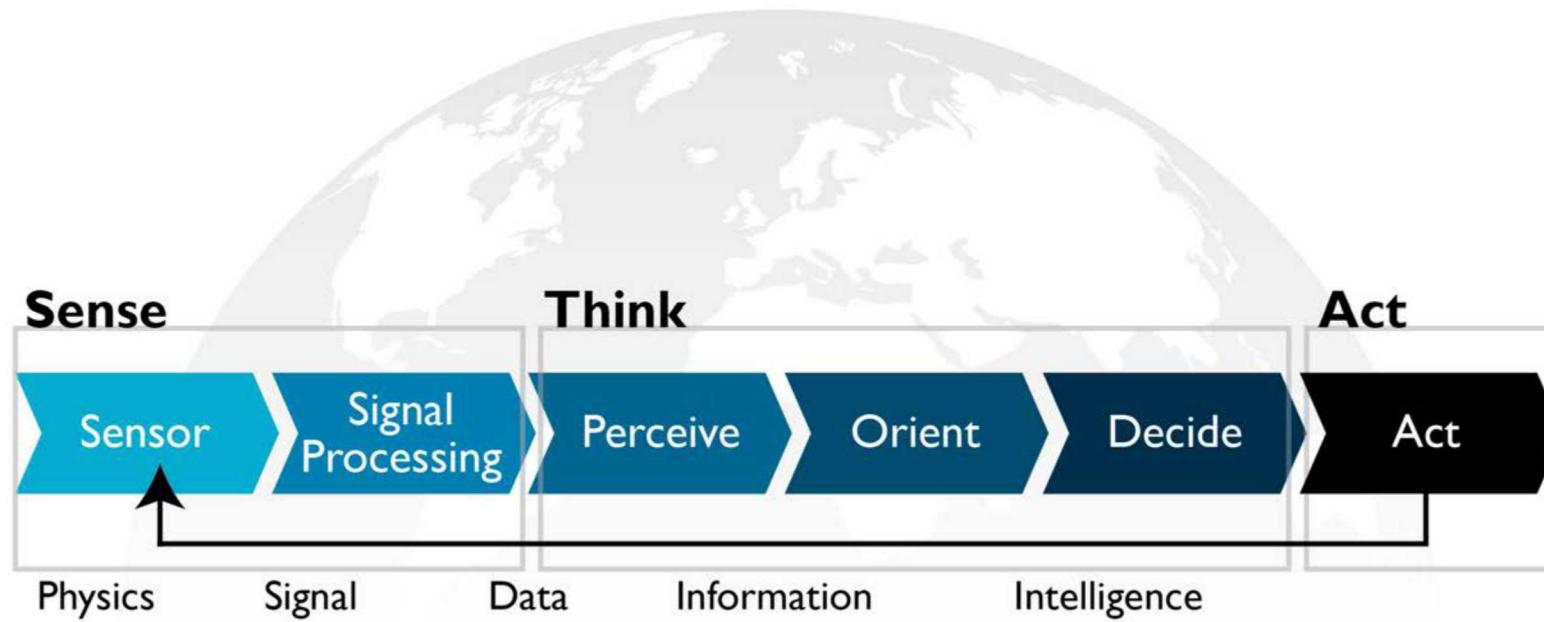
Vehicle shape changes in hypersonic flight, creating challenges for flight control


Difficult to simulate velocity, temperature, and Mach number on the ground

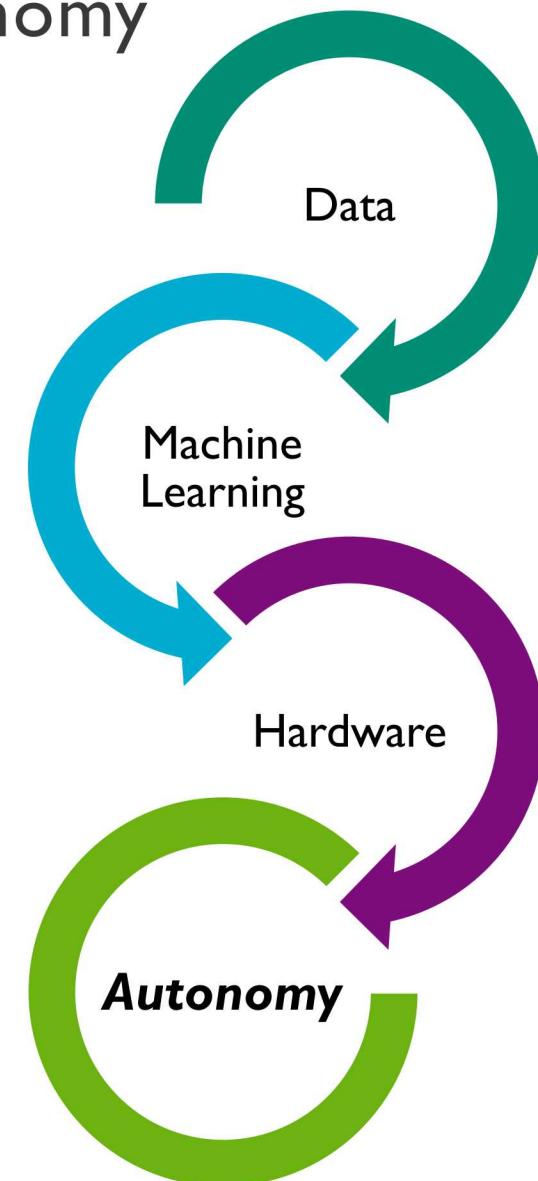
Difficult to design sensors & actuators that can operate in a hypersonic flight environment

Calculations are extremely time consuming

Why Hypersonic Glide?


Hypersonic systems fly distinctly different trajectories from Ballistic systems

Autonomous Systems for National Security


- Follow Sense-Think-Act paradigm
- Sensors provide signals & data
- Machine intelligence starts with data
- Sensor exploitation (target detection, identification, and characterization) provides information and intelligence
- High-level reasoning and dynamic sensor/platform/asset management close the loop with action

AI Underpins Recent Advances in Autonomy

“At least 80 percent of the recent advances in AI can be attributed to the availability of more computer power.”

- Dileep George,
MIT Technology Review, 2013

Will AI tech plug-n-play for defense?

- **Andrew Ng,**
Harvard Business Review

The AI community is remarkably open, with most top researchers publishing and sharing ideas and even open-source code. In this world of open source, the scarce resources are therefore:

Data.

Among leading AI teams, many can likely replicate others' software in, at most, 1–2 years. But it is exceedingly difficult to get access to someone else's data. ***Thus data, rather than software, is the defensible barrier for many businesses.***

Talent.

Simply downloading and “applying” open-source software to your data won’t work. ***AI needs to be customized to your business context and data.*** This is why there is currently a war for the scarce AI talent that can do this work.

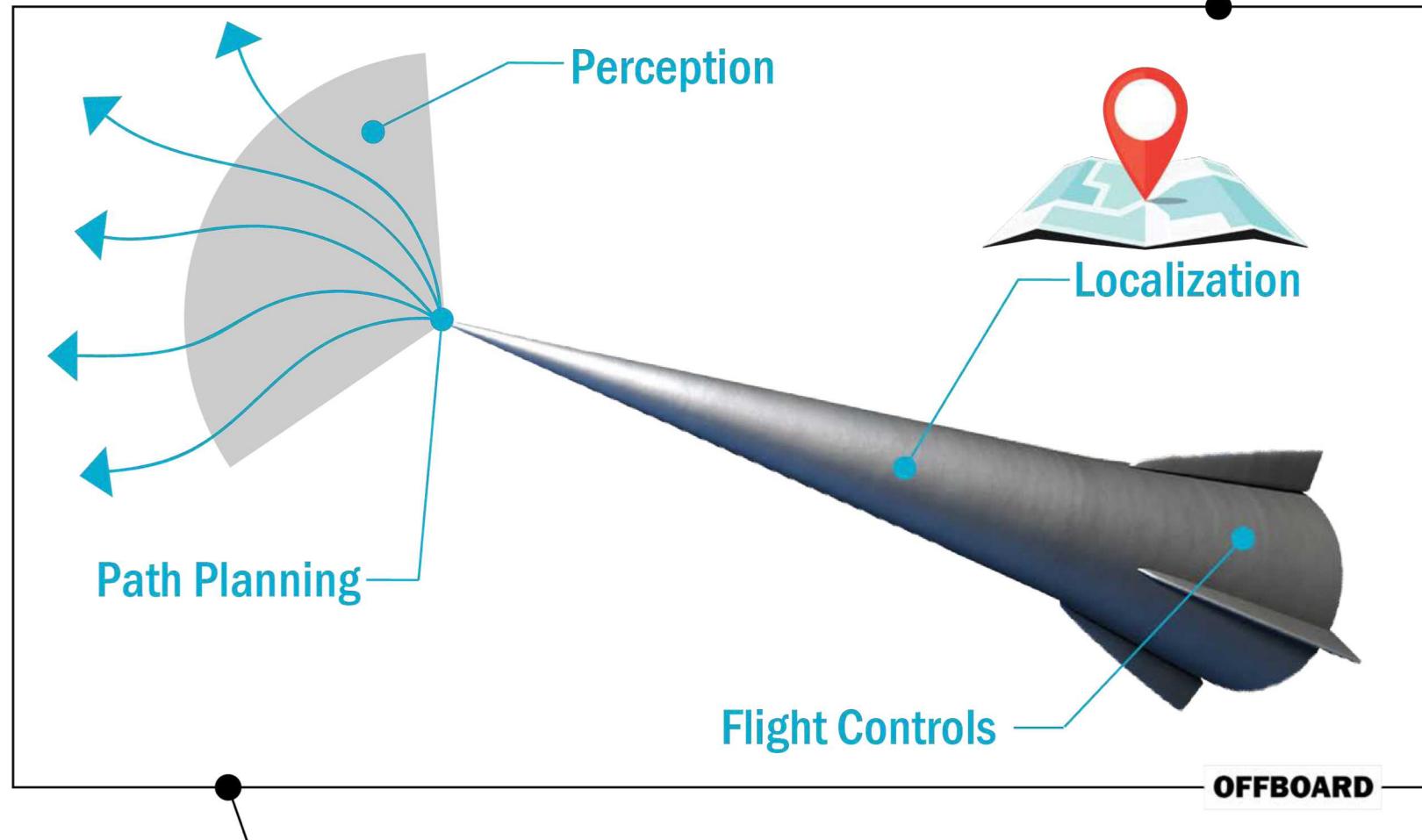
Autonomy for Hypersonics

Autonomy for Hypersonics

Hypersonics provide a lot of military utility

- Hypersonics offer survivability and utility at long/strategic ranges, since they travel at exceptional speeds and are less susceptible to anti ballistic missile countermeasures and other defensive systems

These systems will offer the most utility if they are able to:


- Utilize rapidly constructed flight plans (enable speed of action)
- Navigate without GPS
- Perceive their environment and adapt to it to increase survivability and to counter moving targets
- Employ tactics and engagement strategies that are highly effective in complex, rapidly evolving environments and heavily defended areas
- Cooperate with other hypersonic systems

Mission Planning

Includes offline flight planner

Mission Analytics

Inform tactics & engagement strategies

Evolution of Hypersonic Strike Capability

AutonomyNM

External Partnership Plan: AutonomyNM

Autonomy Innovation Hub for Advanced Flight & Space Systems

Creating a mechanism to “spin-in” ideas that provide transformative autonomy solutions, opportunities for commercialization, and a pipeline of AI and autonomy talent

A4H initiated AutonomyNM, with the goal of promoting and attracting collaborative R&D with university partners

- Helps SNL expand its innovation network in this critical technology area
- AutonomyNM Facility: A cutting-edge, modern research environment that will promote scientific exchange and facilitate two-way technology transfer
- Venture track for AA Collaborators: The program will allow SNL and AA researchers to work side-by-side to help university innovators transition their research into end-use applications
- Internship track: AutonomyNM is incorporated under TITANS and provide students an opportunity to research autonomy solutions for advanced flight and space systems

Current University Research Partnerships

Illinois	Georgia Tech	UT Austin	Purdue	Kansas State	UNM
Naresh Shanbhag + Craig Vineyard Neural-Inspired Approaches and Implementations for Automatic Target Recognition	Jennifer Hasler + Craig Vineyard Neural-Inspired Approaches and Implementations for Automatic Target Recognition	Renato Zanetti + Scott Jenkins SAR Image Formation and Feedback to Navigation Subsystem in GPS Denied and Degraded Environments	Kaushik Roy + Craig Vineyard Neural-Inspired Approaches and Implementations for Automatic Target Recognition	Bill Hsu + Jason Searcy Magnetometer-Aided GPS-Denied Navigation	Meeko Oishi + John Richards Autonomous Multi-Platform Sensor Scheduling
Girish Chowdhary + David Kozlowski Optimal Elevon Control Allocation and Fault Detection/Recovery for Hypersonic Flight Vehicles	Ani Mazundar + Mary Rose Sena Using Generative Models to Generate Hypersonic Boost-Glide Vehicle Trajectories	Ufuk Topcu + David Kozlowski An Optimization and Robust Control Technique for use in Flight Control Design for Hypersonic Vehicles	Dan DeLaurentis + Larry Jones Rapid Estimation for Hypersonic Engagements	Texas A&M	Utah State
Alex Scwing + Josh Coon Synthetic High Forward Squint SAR Images Using Generative Adversarial Networks	Evangelos Theodorou + David Kozlowski An Optimization and Robust Control Technique for use in Flight Control Design for Hypersonic Vehicles	Maruthi Akella + Mike Grant Autonomy-Enabled, Real-Time, Rapid Trajectory Generation for Highly Dynamic Hypersonic Missions	Shreyas Sundaram + John Richards Autonomous Multi-Platform Sensor Scheduling	John Hurtado + Julie Parish Robust, Rapid, Autonomous Mission Planning for Hypersonic Flight Vehicles	Randall Christensen + Scott Jenkins SAR Image Formation and Feedback to Navigation Subsystem in GPS Denied and Degraded Environments
Rakesh Nagi + Keith LeGrand Autonomous Multi-Platform Sensor Scheduling	Jonathan Rogers + Julie Parish Robust, Rapid, Autonomous Mission Planning for Hypersonic Flight Vehicles	Karen Willcox + Kevin Carlberg Rapid High-Fidelity Aerothermal Responses with UQ via Reduced-Order Modeling		John Hurtado + Jason Searcy Magnetometer-Aided GPS-Denied Navigation	THE UNIVERSITY OF ARIZONA

- A state-of-the-art research testbed that incorporates Design Reference Missions (DRMs) and low-cost COTS technology to enable scientific exchange with academia and industry
 - Will allow users to characterize performance of AI/autonomy algorithms – ultimately demonstrating utility for spin-in and spin-out of autonomous flight and space system technologies
 - Visiting researchers can use the testbed to support their research, and the testbed will help support a “semester at the Labs” program with interested schools

Commercial Applications

AGRICULTURE & CLIMATE

AIRINOV **DEVERON**
droneseed **N**
University of Nevada, Reno

DELIVERY

amazon **Google**
Flirtey
anything anytime anywhere

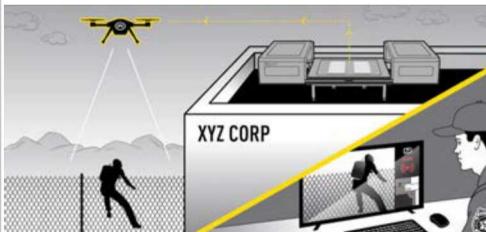
FILMMAKING, PHOTOGRAPHY & NEWS

aerodyne **THE SKY GUYS**
VERGE AERO

INFRASTRUCTURE INSPECTION

HUVR **Honeywell**
airsight **Avitas Systems**
a GE venture

INSURANCE


kespry **Airware**
PRECISIONHAWK

MINING & UNDERGROUND

exyn technologies **SKYLARK DRONES**

SECURITY & SURVEILLANCE

sunflower LABS **NIGHTINGALE SECURITY** **APTONOMY**

SEARCH/RESCUE & EMERGENCY RESP.

AERONES **DRAPER**
UASTRACKER **Y**

SURVEYING

CYBERHAWK **FALCON EYE DRONES**
TEXO Drone Survey & Inspection Ltd

WAREHOUSING & INVENTORY

exyn technologies **DRONE SCAN**
vtrus

WIRELESS COVERAGE

AT&T **verizon** **Google** **f**

Technical Challenges

REAL-TIME MAPPING & NAVIGATION

The ability to autonomously navigate between target locations quickly (i.e., at fairly high speed) and reliably while avoiding obstacles in its path, and with little to no a-priori knowledge of the operating environment.

MOVING OBSTACLE AVOIDANCE

The ability to avoid collisions with moving obstacles (including those that are on a given path such as another UAV or those that are persistent such as an angry dog) and still arrive at the desired location or complete a mission.

AIR TRAFFIC MANAGEMENT

The ability to support the orchestration of a huge number of drone operations by many users (e.g., first responders, Amazon, etc.) in urban environments without air traffic controllers monitoring each and every vehicle in the air.

ENERGY MANAGEMENT

Reliable, continuous, & smart energy management in the network layer, data link layer, physical layer, & cross-layer protocols to extend missions without adding capacity for larger batteries. Enables robust sensing, navigation, etc.

VERSATILE NAVIGATION

The ability to use alternate (non-GPS) navigation including terrain-aided navigation and imagery analysis; and to switch between navigation capabilities (e.g., flying with GPS and using LIDAR to “visualize” the landing zone).

COOPERATIVE SENSING

Ability of autonomously functioning vehicles to be reliably deployed in the form of a “swarm” or combine into a system to carry out a prescribed mission and to respond as a group to high-level management commands.

CHALLENGING ENVIRONMENTS

Mostly related to weather (but can also include emergency response, fire fighting, etc.), the ability to autonomously modify route planning to circumvent identified hazards or navigate in visually-altered environments (flood zones).

Commercial Application Challenges

REAL-TIME MAPPING & NAVIGATION

APPLICATIONS IN URBAN ENVIRONMENTS: situational awareness in crowded, unknown, or changing environments

MINING & UNDERGROUND: navigation in GPS-denied areas

SEARCH/RESCUE & EMERGENCY RESP.: navigation and hazard identification

INFRASTRUCTURE INSPECTION: indoor operations

MOVING OBSTACLE AVOIDANCE

PACKAGE DELIVERY: avoiding the dog or bird of prey

DYNAMIC FILMOGRAPHY: close-up filming in high-speed, unpredictable environments

SEARCH & RESCUE & EMERGENCY RESP.: avoiding falling objects after earthquake, avoiding bad guys

AIR TRAFFIC MANAGEMENT

SECURITY/SURVEILLANCE, PACKAGE DELIVERY, WIRELESS

COVERAGE: operating in high traffic urban environments

ENERGY MANAGEMENT

INFRASTRUCTURE INSPECTION, PACKAGE DELIVERY, SEARCH & RESCUE, SECURITY/SURVEILLANCE: ability to go long distances

All applications that require more robust sensing and processing power

VERSATILE NAVIGATION

PACKAGE DELIVERY: landing in unknown areas

SECURITY/SURVEILLANCE, PACKAGE DELIVERY, SEARCH & RESCUE,

INFRASTRUCTURE INSPECTION: operating in urban and other obstructed environments (e.g., canyons, tunnels, etc.)

COOPERATIVE SENSING

SECURITY/SURVEILLANCE: site/asset protection

EMERGENCY RESPONSE: fire fighting

DELIVERY: combining to transport larger payloads

AGRICULTURE: wide-area crop treatment

CLIMATE: cloud seeding

Broad Application Space

CHALLENGING ENVIRONMENTS

EMERGENCY RESPONSE, SEARCH & RESCUE: navigating in visually altered environments (e.g., post-tsunami)