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3 | Introduction

Why haven’t duty-cycle tests been as widely adopted by
customer/manufactures as we expected in 2013?

The duty-cycle approach, as with any testing program, must balance ease
(cost of testing to manufactures) and salience (usefulness of the derived
metrics to decision makers).

Ease Salience




4

Introduction

The state-of-the-art approach to measure energy storage performance is a rough allegory to the
solution for miles per gallon (mpg) in cars.

Used Vehicle Fuel Economy and Environment Gasoline Vehicle

Why does mpg work for cars?
2011 Subaru Outback Wagon AWD . . .
2.5L, 4 cyl, Automatic (variable ggear ratios), Regular Gasoline + Standardized usage with limited

Fuel Economy When New applicatiops. (City/highway)
MPG * Road conditions are demonstrably
‘ 29 929 similar across the country
: , combined  city highway » Roughly linear relationship between
e Buckgite Y o, usage and life
This vehicle emits 370 grams of CO, per mile.
» Absolute accuracy not needed for the

metric to be useful

CAR ANALOGY

Actual fuel economy will vary for many reasons including driving conditions
and how the car was driven, maintained, or modified. This label contains EPA
mileage and CO,, estimates for this vehicle when new.

fueleconomy.gov

Calculate personalized estimates and compare vehicles

Smartphone
QR Code~

Source: USEPA https://www.flickr.com/photos/usepagov/

This approach, which we will term the duty-cycle approach, is motivated by the balance
of ease (cost of testing to manufactures), and salience (usefulness of the derived
metrics to decision makers).



Introduction

The duty-cycle approach breaks down in when exclusively applied to BESS

L]

Company X Containerized Energy Storage Solution
1 MW, 4 MWh grid scale storage system

Energy Storage Performance

Why this doesn’t work like we want it to
* Many diverse ES applications
A metric that is critical for some,
can be irrelevant to others
« Each application is different in different
parts of the country and currently in flux
» Frequency reg. in CA ver. PJM
» For some technologies, higher
performance can be achieved by shorting
life (duty cycle gaming)

Round-Trip Efficiency When New

9 O% 92%  83%

CEC score  Frequency  Peak
Regulation  Shaving

—
From Wikimedia Commons, the free media repository

Stock Photo

52 kW average losses when cycling daily

This ESS generates 420 grams of CO2 per cycle

Actual round trip efficiency will vary for many reasons including application, temperature,
and how the system was maintained or modified.

Sandia.gov

calculate personalized estimates and compare technologies

Imagine a world where driving some cars faster makes them break down early, where roads and traffic laws
vary widely across the country and are contently changing, and where people use cars for heating their
homes or doing laundry as often as they do for driving and you will get a sense for how challenging it is to find
a duty-cycle based test protocol for BESS that balances ease and salience.
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Introduction

How many hours of duty-cycle testing would it take to capture
an ESSs performance for

=All 1

stacl

4 applications in the ESSHB (+ additional applications and
ked applications)?

=All |

SOs RTOs and different state and local utilities?

“In such a way as to fairly compare batteries and flywheels?

miwessm Not Easy and/or Swbiemew Irrelevant

- A



7 I Model-Based Testing Alternative L

Characterize Physical Develop a predictive
Properties (with computer model of
uncertainties) the ESS
Limited Testing Program 1

Some model o e Joeia Probabilistic
parameters can be “ performance, specific

used as relevant to the.spe.cific
performance metrics application

Accurate and
Actionable Information



g8 I Characterize Physical Parameters

Energy Storage Pulsed Power
Capacity Testing Characterization (ESPPC) Test
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Manual” EPRI Energy Storage Integration Council, December 2017
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Capacity and Energy Efficiency Open Circuit Voltage Curve, Impedance, Max Power/SoC Function




9 I Characterize Physical Parameters

Degradation Testing

Battery degradation is not linear. Instead it is an exponential decay function (like half-life) that is
driven by stress factors based on time, SoC, temperature, and depth of discharge.
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. Oudalov, A. Ulbig, G. Andersson, and D. Kirschen, “Modeling

of lithium-ion battery degradation for cell life assessment,” IEEE Transactions
on Smart Grid, vol. PP, no. 99, pp. 1-1, 2016..

N
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Calendar Life =1 Cycle Life

Time Stress Function (linear)

Average SoC Stress Function (exponential)

Temperature Stress function (exponential)

Depth of Discharge Stress Function. (polynomial or reciprocal )
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Develop a predictive computer model of the ESS

Name Symbol Mean

Battery Thermal Transmittance U 0.2 W/°C
Name Symbol Mean . . 1.495 /
Charge Capacity Cexp 800 Ah Battery Heat Capacity Cheat J/°C
Coulombic Efficiency TNe 94.6 % Maximum Temperature Tmax 45 oC
Self Discharge Current isd 0.50 A Minimum Temperature Timin -200C
Inverter Efficiency Coefficient  ¢o -2.0503e-04 E&T&Zﬁ?ﬁiﬁﬁmm“mn- Tom SR
Inverter Efficiency Coefficient 1 0.99531 tance Uen 1w/°C
Inverter Efficiency Coefficient b2 -6.1631 ; 30.000
Battery Internal Resistance Ro 71.6 mS2 Fiomsipe bt Cgeily Cex J/°C
Maximum Power Discharge Dmax 500 kW Max AC power PHVAC-max 100 kW
Maximum Power Charge Pmin 500 kW AC Efficiency "IHVAC Ll
M?‘x_lmum SoC Smax 95 % Note: these model parameters are meant to represent a hypothetical battery
Minimum SoC Smin 20 % system and do not necessarily reflect any specific equipment.
Maxi B Vol 820V p

aximum Battery Voltage Umax
Minimum Battery Voltage Umin 680 V T Symbol Value
Maximum Current Discharge Pmax 1000 A Thermal Degradation Constant k7 0.1311
Maximum Current Charge Pmin 1000 A Time Degradation Constant k¢t 1.49e-6
S . SoC Degradation Constant k¢ 0.01
Regularization weight I1 le-5 o ——— r— <0
Cubic Polynomial Fit o B v B Reference Temperature Tref 20
02<¢<0.95 320.377 -368.742  201.004 669.282 EoL Cost Assumed CeoL -$800,000
- Regularization weight IT le-5
. " _Polynomial Fit a b C d e
Note: these model parameters are meant to represent a hypothetical battery Degradation  Stress | oo1 | 3osq 06418 10739 12328
system and do not necessarily reflect any specific equipment. Factor : e e-1 e-1 e2

Parameters Estimated Through Testing




11 I Example Performance Metrics

Table 4.4.2. Reference Performance

Subject Description

The amount of electric or thermal energy capable of being stored by an ESS,
expressed as the product of rated power of the ESS and the discharge time at
rated power

Stored Energy
(Section 5.2.1)

Round-Trip Energy | The useful energy output from an ESS divided by the energy nput into the ESS
Efficiency (5.2.2) over one duty cycle under normal operating conditions, expressed as a percentage

Response Time The time 1n seconds 1t takes an ESS to reach 100 percent of rated power during
(Section 5.2.3) charge or from an initial measurement taken when the ESS 1s at rest

The rate of change of power delivered to or absorbed by an ESS over time,

Ao expressed in megawatts per second or as a percentage change in rated power over

(Section 5.2.3) .
time (percent per second)

Reactive Power The time 1n seconds it takes an ESS to reach 100 percent of rated apparent power
Response Time during reactive power absorption (inductive) and sourcing (capacitive) from an
(Section 5.2.3) initial measurement taken when the ESS i1s at rest
Reactive Power The rate of change of reactive power delivered to (inductive) or absorbed by
Ramp Rate (capacitive) an ESS over time expressed as Mvar per second or as a percentage
(Section 5.2.3) change 1n rated apparent power over time (percent per second)

Internal Resistance

(Section 5.2.3) The resistance to power flow of the ESS during charge and discharge

Rate at which an ESS loses energy when it 1s in an activated state but not
producing or absorbing energy, including self-discharge rates and energy loss
rates attributable to all other system components (1.e., battery management
systems, energy management systems, and other auxiliary loads required for
readiness of operation)

Standby Energy Loss
Rate (Section 5.2 4)

Rate at which an ESS loses energy when the storage medium 1s disconnected
from all loads, except those required to prohibit it from entering into a state of
permanent non-functionality

Self-Discharge Rate
(Section 5.2.5)

DR Conover et al “Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems” Sandia
National Laboratories and Pacific Northwest National Laboratory, PNNL-22010 Rev 2 / SAND2016-3078 R, April 2016




12 I Example Performance Metrics T
v e
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6| = Polinomial Fit |.
5 4 =2 0 2 4 e s 4 =2 o0 2 4 6
AC Power (kW) AC Power (kW)
mee _ : : 29 )
CEC Round-Trip Energy Efficiency Enwrgy Eficioncy
77
Marginal Efficiency 76 . v
100 p T
. ¢ 1 2 ' ' N S -Ma:gmal Coulolmblc Emo»er:cy /, ey
CEC Capacity” I .| | oo . 75 ; .
gy , = 2 H
> 9+ -.,,_‘.'F-\_ | - o v }z~~,~~
< L S g 74 £ v o g
2 85 ! | |  -— o L o AT
w 3 %
) ® ol g S f ] R 7130 . )
=“CEC Cycle-Life Curve” HIViRE ’“‘w_,; e | Charge Rate (A
. a - -15A
PR i 3 -
04 50700 750 200 * 250 5. THF-2A
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8 D. M. Rose and S. R. Ferreira “Initial Test Results from the RedFlow 5 kW, 10
3 kWh Zinc-Bromide Module, Phase 1” Sandia National Labs, SAND2012-1352
Sy e e e e e v

Depth of Discharge(% of Capacity)

An Overview of Different Approaches for Battery Lifetime Prediction - Scientific Figure on
ResearchGate. Available from: https://www.researchgate.net/figure/Cycle-life-versus-
DOD-curve-for-a-lead-acid-battery_fig2_317107750 [accessed 10 Jun, 2019]




13 I Use the model to Simulate Application Specific Performance

Peaker Plant Bulk Energy 35 , | , | |
Predictive Service In CALISO Peak Net Load = 31.522GW
— 30 F ‘
Computer Model — 3
& 25
Price o
Arbitrage in
Frequency ERCOT ) 4 s 12 20 24
Regulation in T (Rodrss
PJM

3{] L] ! ! I L] L L] I |

Mormalized Power

0 4 g 12 16 20 24 28 32 36 40 44 48
Time (hours)

Time



14 | Use the model to Simulate Application O R ot oo BN yore o B o
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15 I Closed-loop control: Available Energy Overestimation

Example of model overestimation with closed loop control

A iwi

Net Load (kW)

J UV

— Load

1.5 Calculated net load
——— Achieved net load
l.[j T T T T T T T T
0 20 A0 60 80 100 120 140 160
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16 1 Probabilistic Performance

Uncertainty in model parameters can be incorporated into a probabilistic
understanding of optimal system performance

B isk Neutral Controller
B Risk Avers Controller

Accurate and
Actionable Information

Probability

Service Specific Performance




17 I Conclusions

»The duty-cycle approach breaks down in when exclusively applied to BESS
» All testing protocols must balance ease and salience

»Model-based testing optimizes ease and salience by decoupling testing and
applications specific performance

> The steps to model-based testing are:
» Characterize Physical Properties (with uncertainties)

»Develop a predictive computer model of the ESS
» Use the model to Simulate Application Specific Performance

Ease

Salience
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