

An Overview of Training Data Security Vulnerabilities: Machine Learning is a Leaky Black Box

Philip Kegelmeyer, Jeremy Wendt, Cosmin Safta

Sandia National Laboratories, Livermore, CA

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

LANL, June 13, 2019

Office of the Director of National Intelligence

IARPA
BE THE FUTURE

Doing Bad Things...

- With AI
- To AI
- Reveal the wrong thing

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. Exfiltration via model labels
 3. Exploit inadvertent memorization
 4. Attribute inference: recovering training data
 5. Membership inference: confirming training data
 6. Model stealing: infer the model to better infer the training data
- What to do? A distressingly shallow set of ideas

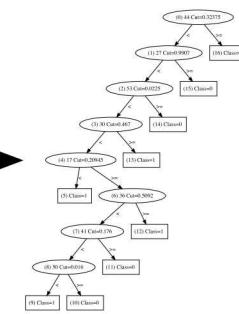
Training and testing a machine learning model

Training Data

DEFECT_ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
		<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	...	<i>a</i> _K
<i>q</i> ₁	Yes	12	1003	0.97	...	0.12
<i>q</i> ₂	Yes	99	2	0.33	...	0.03
<i>q</i> ₃	No	3	27	0.12	...	0.13
<i>q</i> ₄	Yes	16	183	0.08	...	0.58
<i>q</i> ₅	No	17	665	0.36	...	0.64
<i>q</i> ₆	No	44	1212	0.29	...	0.42
<i>q</i> ₇	No	42	24	0.33	...	0.88
<i>q</i> ₈	Yes	78	42	0.44	...	0.52
⋮	⋮	⋮	⋮	⋮	⋮	⋮
<i>q</i> _N	No	12	3141	0.92	...	0.17

Machine Learning Code

Learned Model



Private

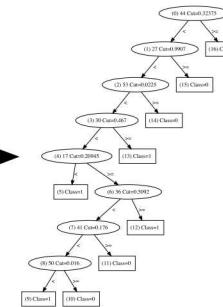
Public

Test Data

Learned Model

Classification with Weights

CGINTX	CGINTY	SNR	...	PMIN
14	123	0.54	...	0.34



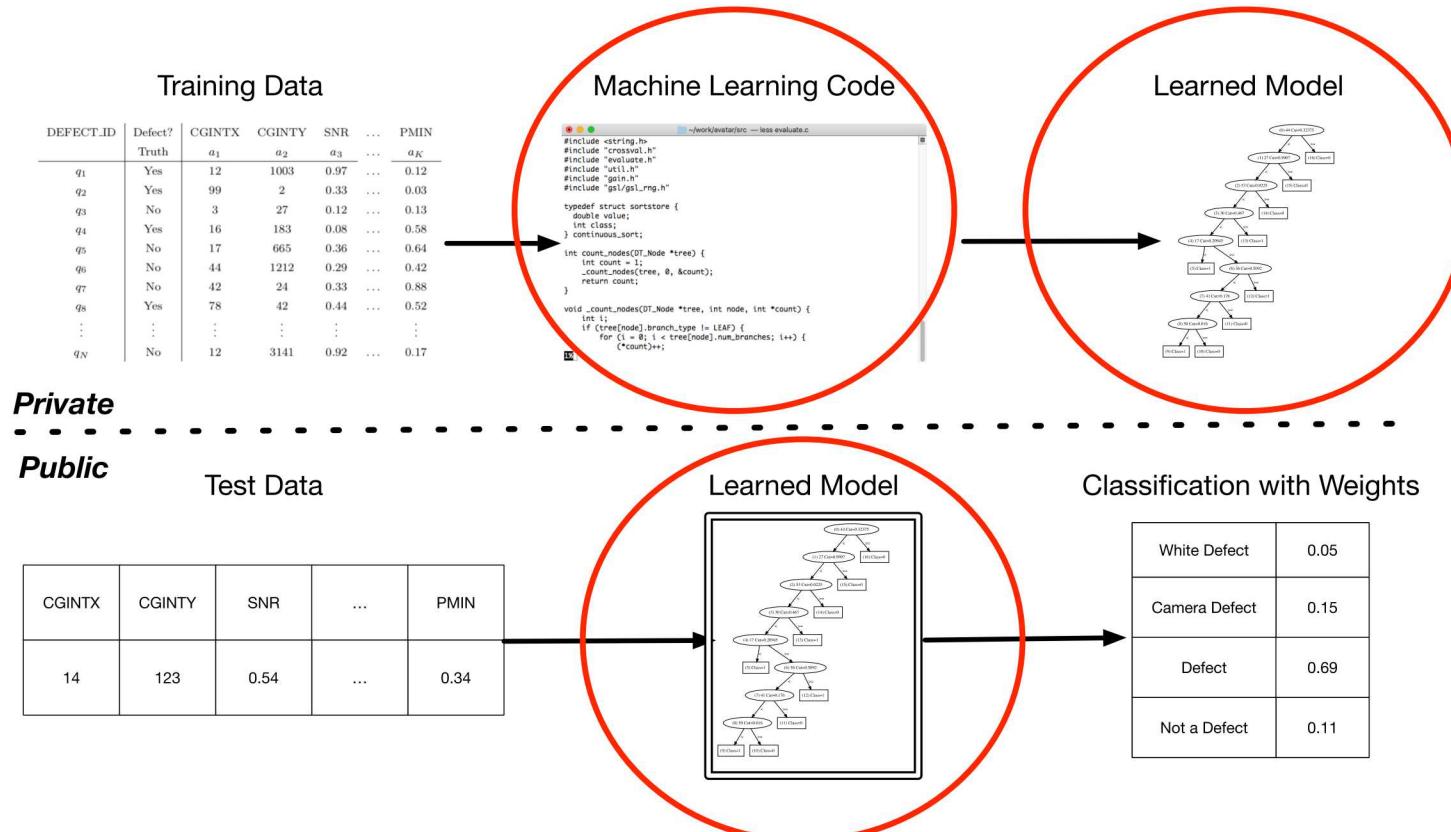
White Defect	0.05
Camera Defect	0.15
Defect	0.69
Not a Defect	0.11

Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. **Exfiltration via model parameters**
 2. Exfiltration via model labels
 3. Exploit inadvertent memorization
 4. Attribute inference: recovering training data
 5. Membership inference: confirming training data
 6. Model stealing: infer the model to better infer the training data
- What to do? A distressingly shallow set of ideas

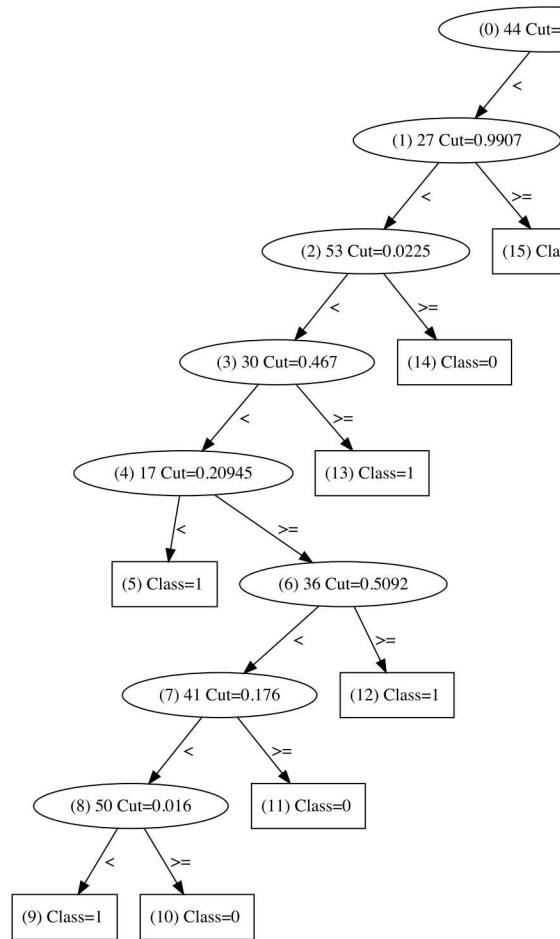
Exfiltration via model parameters

Attack: a code backdoor stashing training data in model parameters



Machine Learning Models That Remember Too Much[9]

A decision tree is a series of threshold parameters



SPLIT CONTINUOUS ATT# 44 < 0.323750
SPLIT CONTINUOUS ATT# 27 < 0.990700
SPLIT CONTINUOUS ATT# 53 < 0.022500
SPLIT CONTINUOUS ATT# 30 < 0.467000
SPLIT CONTINUOUS ATT# 17 < 0.209450
LEAF Class 1 Proportions 0 10
SPLIT CONTINUOUS ATT# 17 >= 0.209450
SPLIT CONTINUOUS ATT# 36 < 0.509200
SPLIT CONTINUOUS ATT# 41 < 0.176000
SPLIT CONTINUOUS ATT# 50 < 0.016000
LEAF Class 1 Proportions 2 11
SPLIT CONTINUOUS ATT# 50 >= 0.016000
LEAF Class 0 Proportions 10 3
SPLIT CONTINUOUS ATT# 41 >= 0.176000
LEAF Class 0 Proportions 22 0
SPLIT CONTINUOUS ATT# 36 >= 0.509200
LEAF Class 1 Proportions 1 9
SPLIT CONTINUOUS ATT# 30 >= 0.467000
LEAF Class 1 Proportions 2 72
SPLIT CONTINUOUS ATT# 53 >= 0.022500
LEAF Class 0 Proportions 16 1
SPLIT CONTINUOUS ATT# 27 >= 0.990700
LEAF Class 0 Proportions 17 1
SPLIT CONTINUOUS ATT# 44 >= 0.323750
LEAF Class 0 Proportions 30 1

Encode the training data as digits

DEFECT_ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
		<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	...	<i>a</i> _{<i>K</i>}
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
\vdots	\vdots	\vdots	\vdots	\vdots	...	\vdots
q_N	No	12	3141	0.92	...	0.17

Compress,
Encrypt,
Serialize to Digits

9833, 6299, 3495, 4946,
3470, 0158, 2537, 2076,
1277, 3644, 9284, 4085,
4201, 4159, 8444, 7234, ...

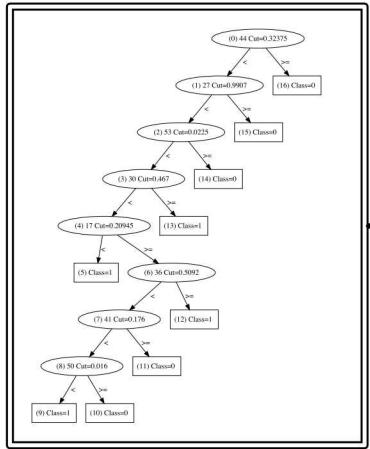
Stash the data in insignificant digits

9833, 6299, 3495, 4946, 3470, 0158, 2537, 2076, 1277, 3644, 9284, 4085, 4201, 4159, 8444, 7234, ...

SPLIT CONTINUOUS ATT# 44 < 0.323750
SPLIT CONTINUOUS ATT# 27 < 0.990700
SPLIT CONTINUOUS ATT# 53 < 0.022500
SPLIT CONTINUOUS ATT# 30 < 0.467000
SPLIT CONTINUOUS ATT# 17 < 0.209450
LEAF Class 1 Proportions 0 10
SPLIT CONTINUOUS ATT# 17 >= 0.209450
SPLIT CONTINUOUS ATT# 36 < 0.509200
SPLIT CONTINUOUS ATT# 41 < 0.176000
SPLIT CONTINUOUS ATT# 50 < 0.016000
LEAF Class 1 Proportions 2 11
SPLIT CONTINUOUS ATT# 50 >= 0.016000
LEAF Class 0 Proportions 10 3
SPLIT CONTINUOUS ATT# 41 >= 0.176000
LEAF Class 0 Proportions 22 0
SPLIT CONTINUOUS ATT# 36 >= 0.509200
LEAF Class 1 Proportions 1 9
SPLIT CONTINUOUS ATT# 30 >= 0.467000
LEAF Class 1 Proportions 2 72
SPLIT CONTINUOUS ATT# 53 >= 0.022500
LEAF Class 0 Proportions 16 1
SPLIT CONTINUOUS ATT# 27 >= 0.990700
LEAF Class 0 Proportions 17 1
SPLIT CONTINUOUS ATT# 44 >= 0.323750
LEAF Class 0 Proportions 30 1

SPLIT CONTINUOUS ATT# 44 < 0.329833
SPLIT CONTINUOUS ATT# 27 < 0.996299
SPLIT CONTINUOUS ATT# 53 < 0.023495
SPLIT CONTINUOUS ATT# 30 < 0.464946
SPLIT CONTINUOUS ATT# 17 < 0.203470
LEAF Class 1 Proportions 0 10
SPLIT CONTINUOUS ATT# 17 >= 0.200158
SPLIT CONTINUOUS ATT# 36 < 0.502537
SPLIT CONTINUOUS ATT# 41 < 0.172076
SPLIT CONTINUOUS ATT# 50 < 0.011277
LEAF Class 1 Proportions 2 11
SPLIT CONTINUOUS ATT# 50 >= 0.013644
LEAF Class 0 Proportions 10 3
SPLIT CONTINUOUS ATT# 41 >= 0.179284
LEAF Class 0 Proportions 22 0
SPLIT CONTINUOUS ATT# 36 >= 0.504085
LEAF Class 1 Proportions 1 9
SPLIT CONTINUOUS ATT# 30 >= 0.464201
LEAF Class 1 Proportions 2 72
SPLIT CONTINUOUS ATT# 53 >= 0.024159
LEAF Class 0 Proportions 16 1
SPLIT CONTINUOUS ATT# 27 >= 0.998444
LEAF Class 0 Proportions 17 1
SPLIT CONTINUOUS ATT# 44 >= 0.327234
LEAF Class 0 Proportions 30 1

Recover the data by white box inspection

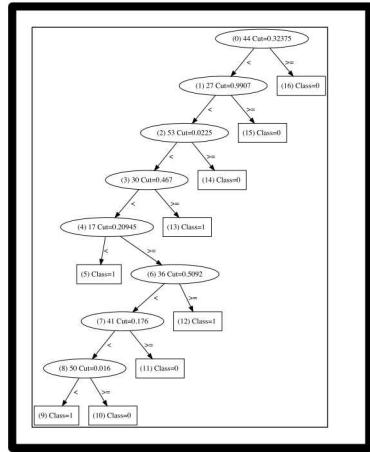


9833, 6299, 3495, 4946,
3470, 0158, 2537, 2076,
1277, 3644, 9284, 4085,
4201, 4159, 8444, 7234, ...

Concatenate,
Deserialize,
Decrypt,
Uncompress

DEFECT_ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
	Truth	a_1	a_2	a_3	...	a_K
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
:	:	:	:	:	...	:
q_N	No	12	3141	0.92	...	0.17

Block exfiltration by providing only a black box?



????, ????, ????, ????,
????, ????, ????, ????,
????, ????, ????, ????,
????, ????, ????, ????, ...

Concatenate,
Deserialize,
Decrypt,
Uncompress

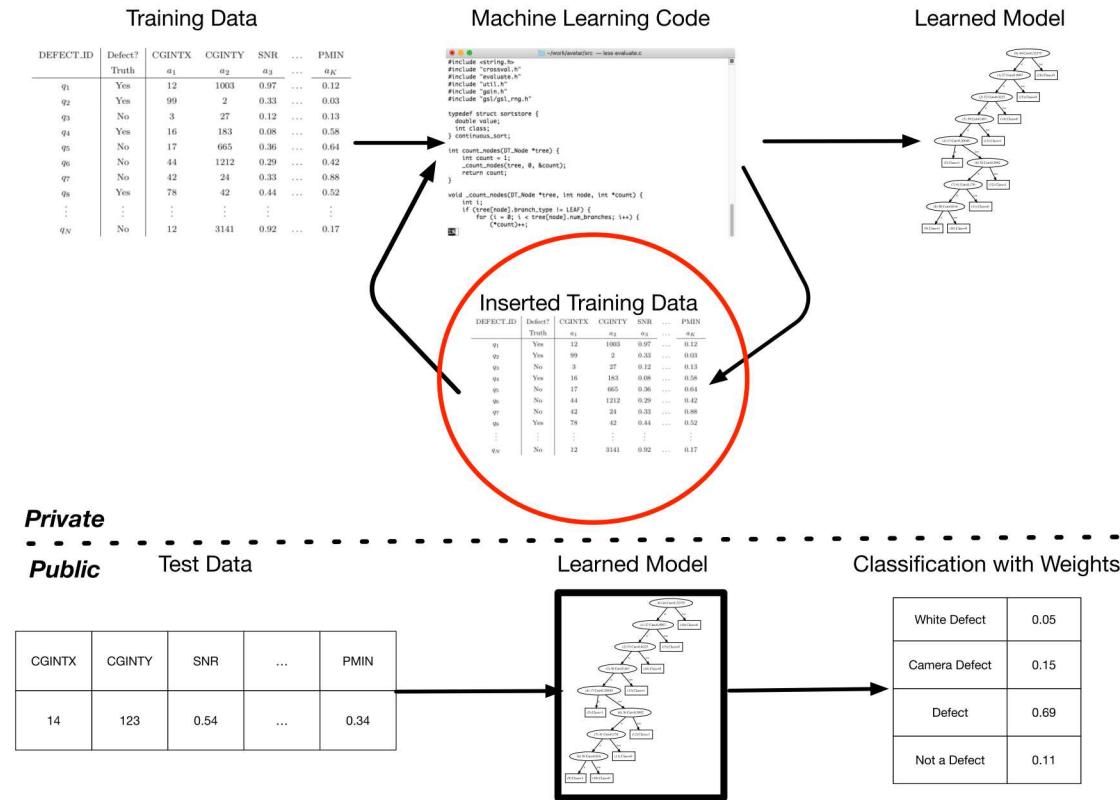
DEFECT_ID	Defect? Truth	CGINTX	CGINTY	SNR	...	PMIN
		a_1	a_2	a_3	...	a_K
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
:	:	:	:	:	...	:
q_N	No	12	3141	0.92	...	0.17

Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. **Exfiltration via model labels**
 3. Exploit inadvertent memorization
 4. Attribute inference: recovering training data
 5. Membership inference: confirming training data
 6. Model stealing: infer the model to better infer the training data
- What to do? A distressingly shallow set of ideas

Exfiltration via model labels

Attack: a code backdoor adding carefully designed synthetic training data



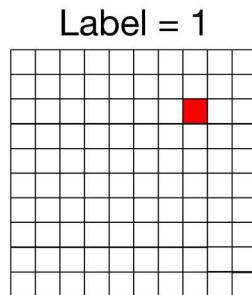
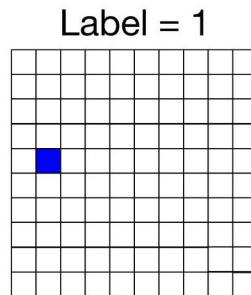
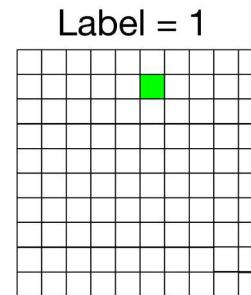
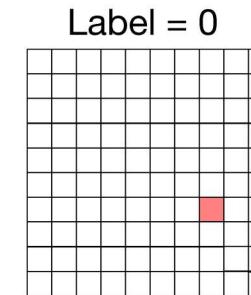
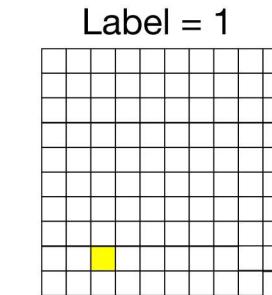
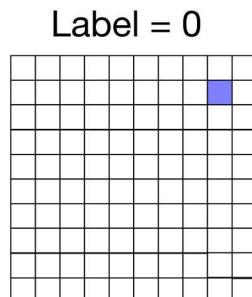
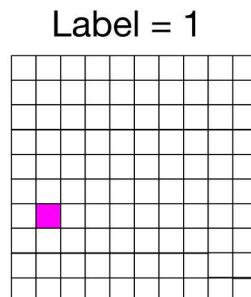
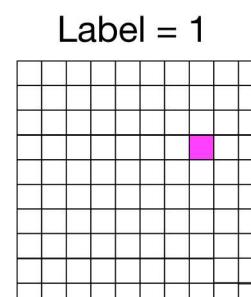
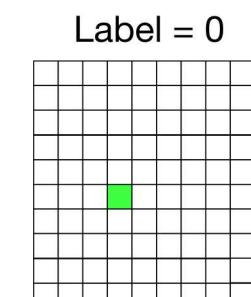
Machine Learning Models That Remember Too Much[9]

Exfiltration of a training image

Choose an image to exfiltrate.

Encode image pixel values as bits, say 1,1,1,0,1,0,1,1,0,....

Create pseudo-random training images to encode those bits as *labels*.



And so on ...

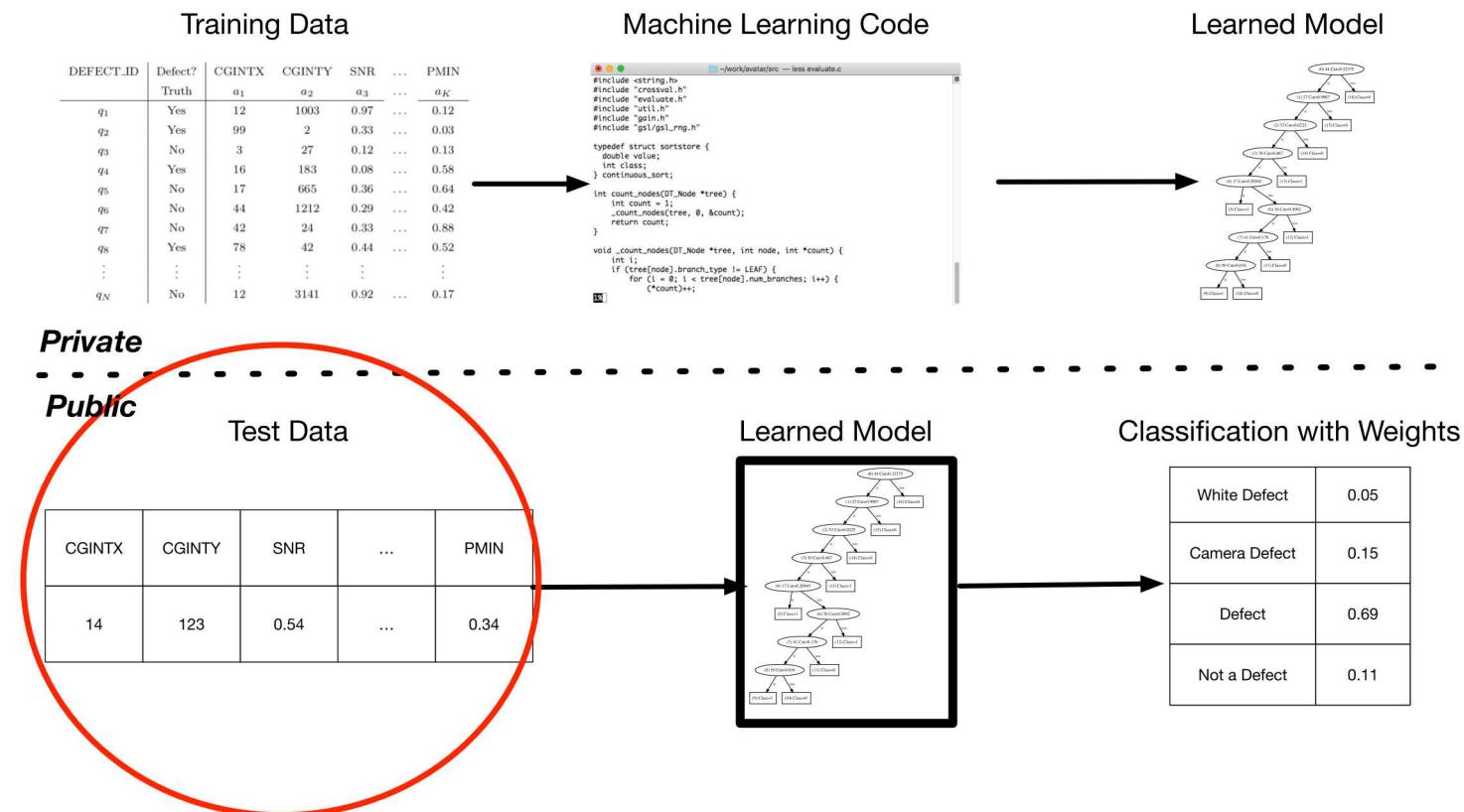
Model learns the labels, dutifully emits them later when probed.

Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. Exfiltration via model labels
 3. **Exploit inadvertent memorization**
 4. Attribute inference: recovering training data
 5. Membership inference: confirming training data
 6. Model stealing: infer the model to better infer the training data
- What to do? A distressingly shallow set of ideas

Exploit inadvertent memorization

Attack: exploit rare string memorization in text prediction



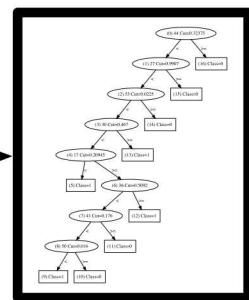
The Secret Sharer: Measuring unintended neural network memorization and extracting secrets[2]

ML to predict the next token in a string

Who took my

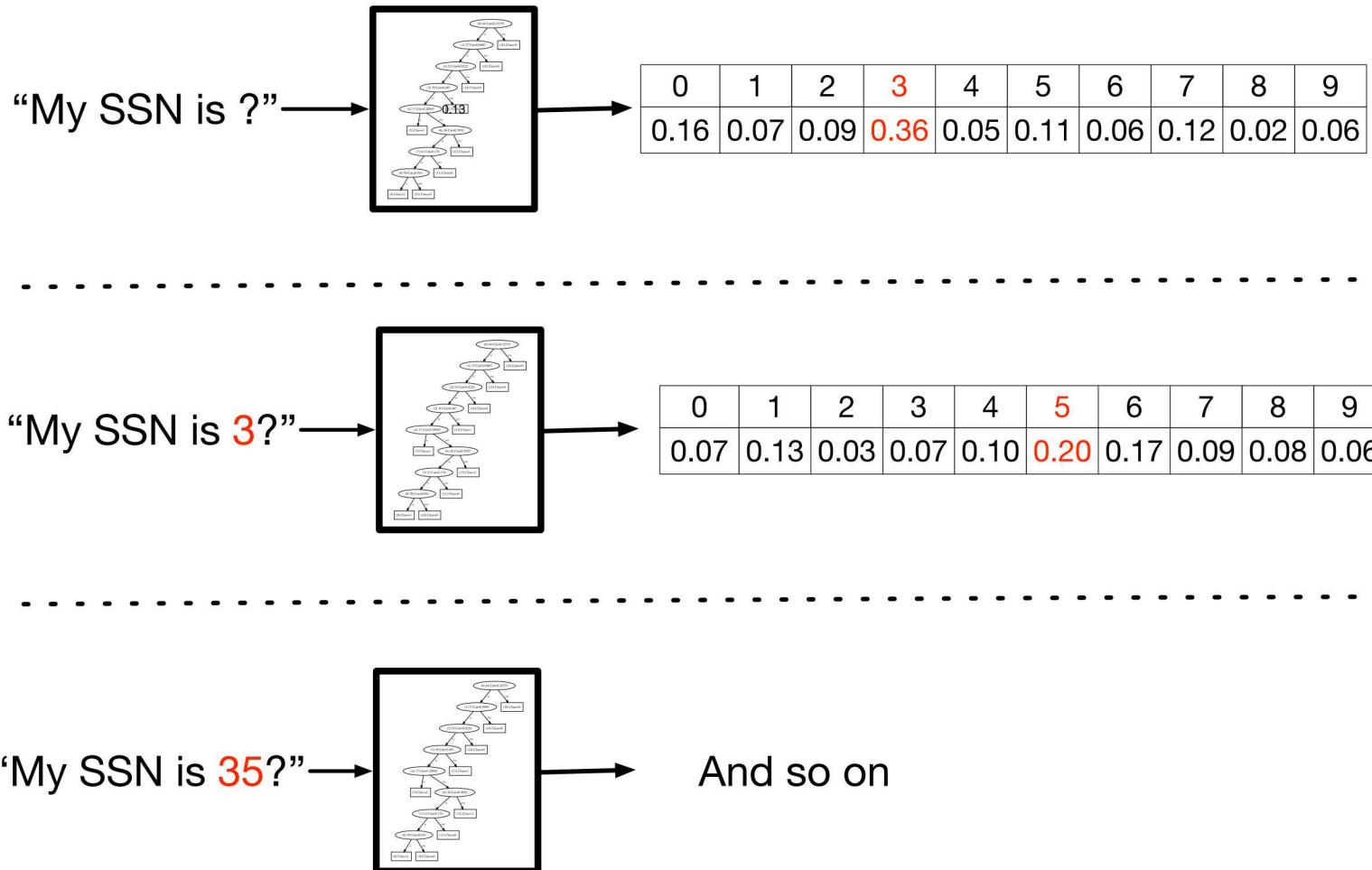
who took my **cheese**
who took my **money**
who took my **money email**
who took my **mountain dew**
who took my **stapler**
who took my **spaghetti**
who took my **hat**
who took my **hat vine**
who took my **hairy toe**
who took my **tax refund**

‘Who took my ?” →



cheese	0.54
money	0.17
money email	0.12
mountain dew	0.05
stapler	0.03

Probe with promising templates

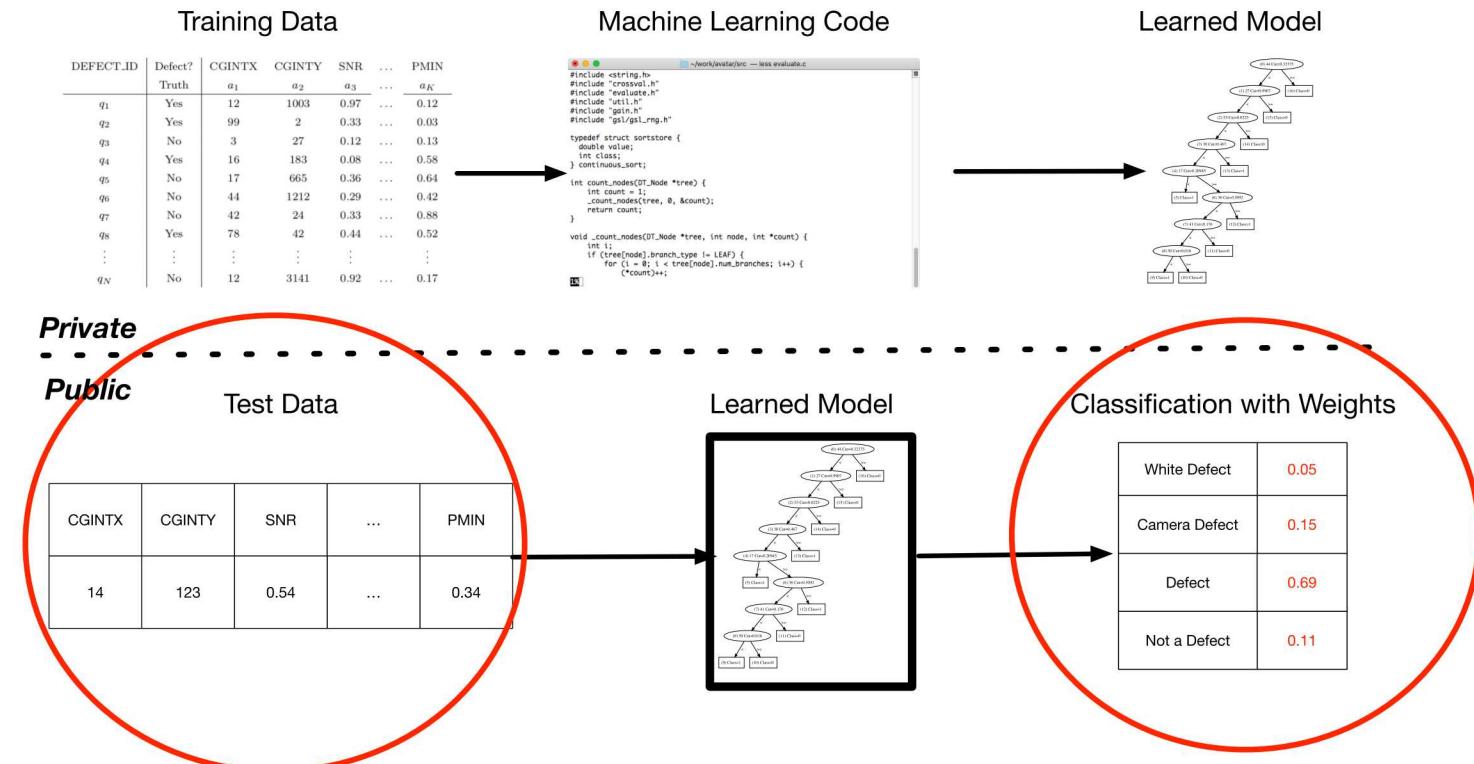


Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. Exfiltration via model labels
 3. Exploit inadvertent memorization
 4. **Attribute inference: recovering training data**
 5. Membership inference: confirming training data
 6. Model stealing: infer the model to better infer the training data
- What to do? A distressingly shallow set of ideas

Attribute inference #1: recovering training data

Attack: exploit **black box** class label weights to recover **feature vectors**



Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures[3]

Recovery of Part of a Feature Vector

Attacker knows part of feature vector used as training data.

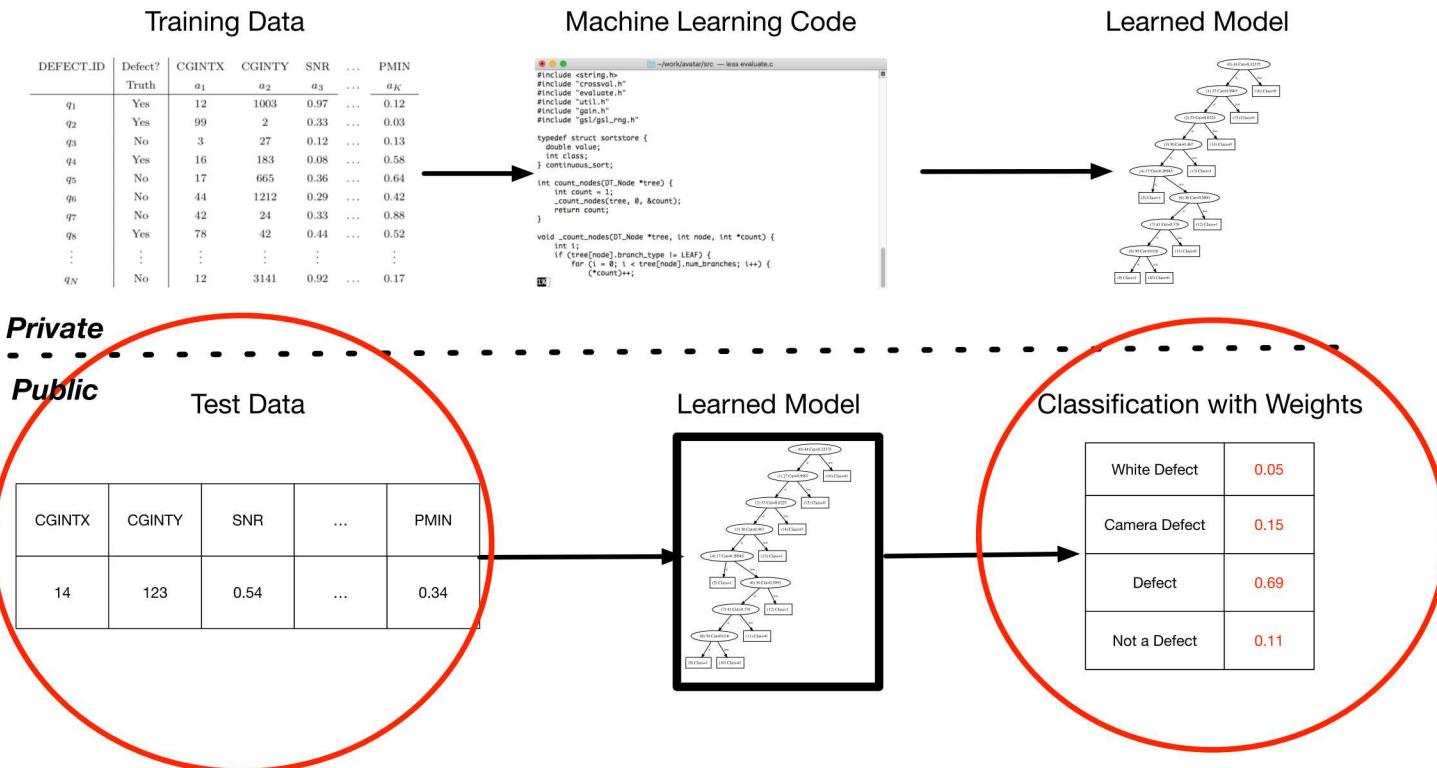
DEFECT_ID	Defect? Truth	CGINTX	CGINTY	SNR	...	PMIN
		a_1	a_2	a_3	...	a_K
—	—	12	1003	0.97	...	0.12
—	—	99	2	0.33	...	0.03
—	—	3	27	0.12	...	0.13
—	—	?	183	0.08	...	0.58
⋮	⋮	⋮	⋮	⋮	⋮	⋮
—	—	12	3141	0.92	...	0.17

Apply Maximum A Posteriori (MAP) analysis:

DEFECT_ID	Defect? Truth	CGINTX	CGINTY	SNR	...	PMIN
		a_1	a_2	a_3	...	a_K
—	—	12	1003	0.97	...	0.12
—	—	99	2	0.33	...	0.03
—	—	3	27	0.12	...	0.13
—	—	16	183	0.08	...	0.58
⋮	⋮	⋮	⋮	⋮	⋮	⋮
—	—	12	3141	0.92	...	0.17

Attribute inference #2: recovering training data

Attack: exploit **black box** class label weights to recover **averaged raw data**



Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures[3]

Recovery of a Representative Training Image

Biometric face recognition; attacker knows name, not face

Adam	Joe	Michelle	Dan	Jeremy	Laura	Philip	Katie	Steve	Dave
0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10

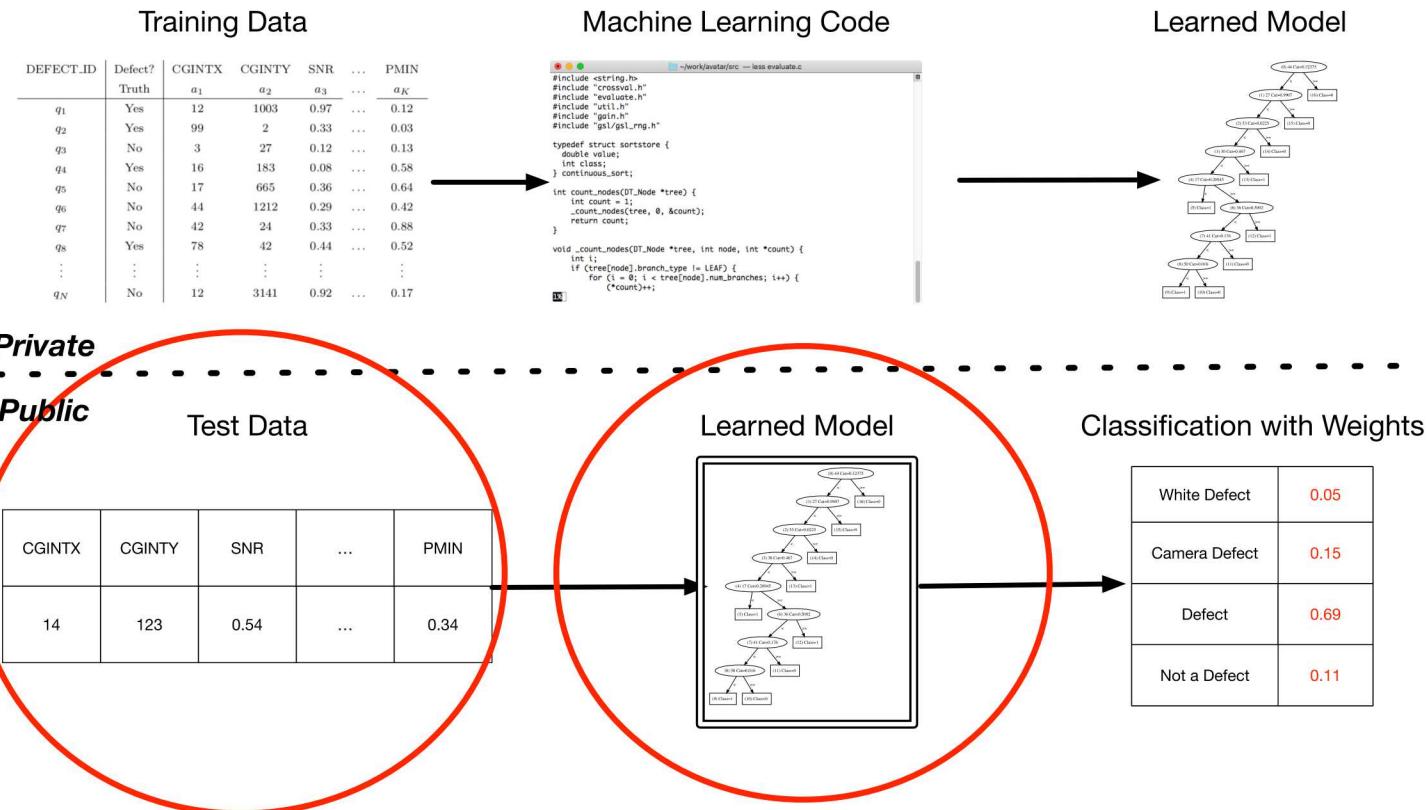
Adam	Joe	Michelle	Dan	Jeremy	Laura	Philip	Katie	Steve	Dave
0.05	0.10	0.05	0.10	0.10	0.05	0.30	0.05	0.10	0.10

Adam	Joe	Michelle	Dan	Jeremy	Laura	Philip	Katie	Steve	Dave
0.00	0.10	0.00	0.10	0.10	0.00	0.60	0.00	0.10	0.10

Adam	Joe	Michelle	Dan	Jeremy	Laura	Philip	Katie	Steve	Dave
0.00	0.00	0.00	0.05	0.00	0.00	0.85	0.00	0.10	0.00

Attribute inference #3: recovering training data

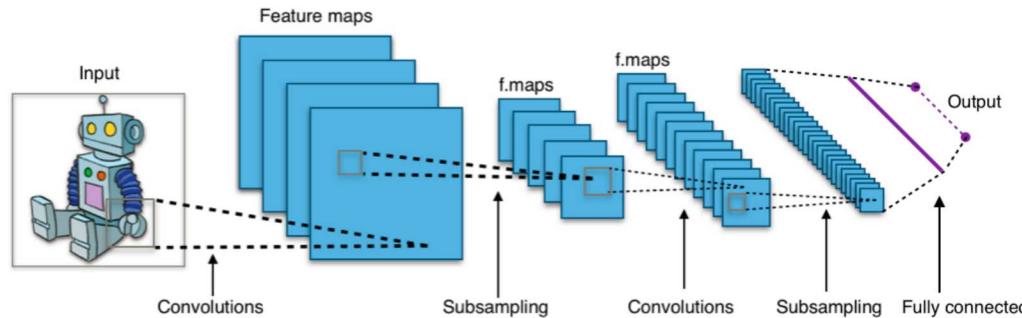
Attack: use white box model knowledge recover specific raw data



Understanding Deep Image Representations by Inverting Them[4]

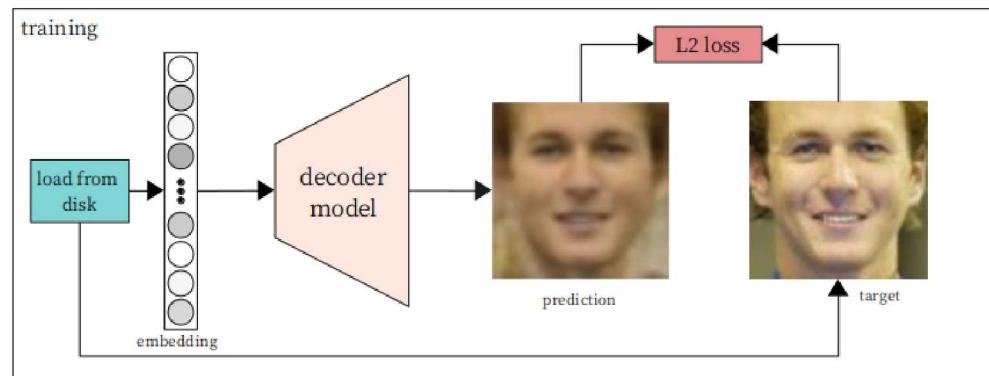
Recovery of an Exact Training Image

Attacker knows one level of a convolutional neural net or autoencoder:



(https://commons.wikimedia.org/wiki/File:Typical_cnn.png)

Use gradient descent to find an input that would create that level:



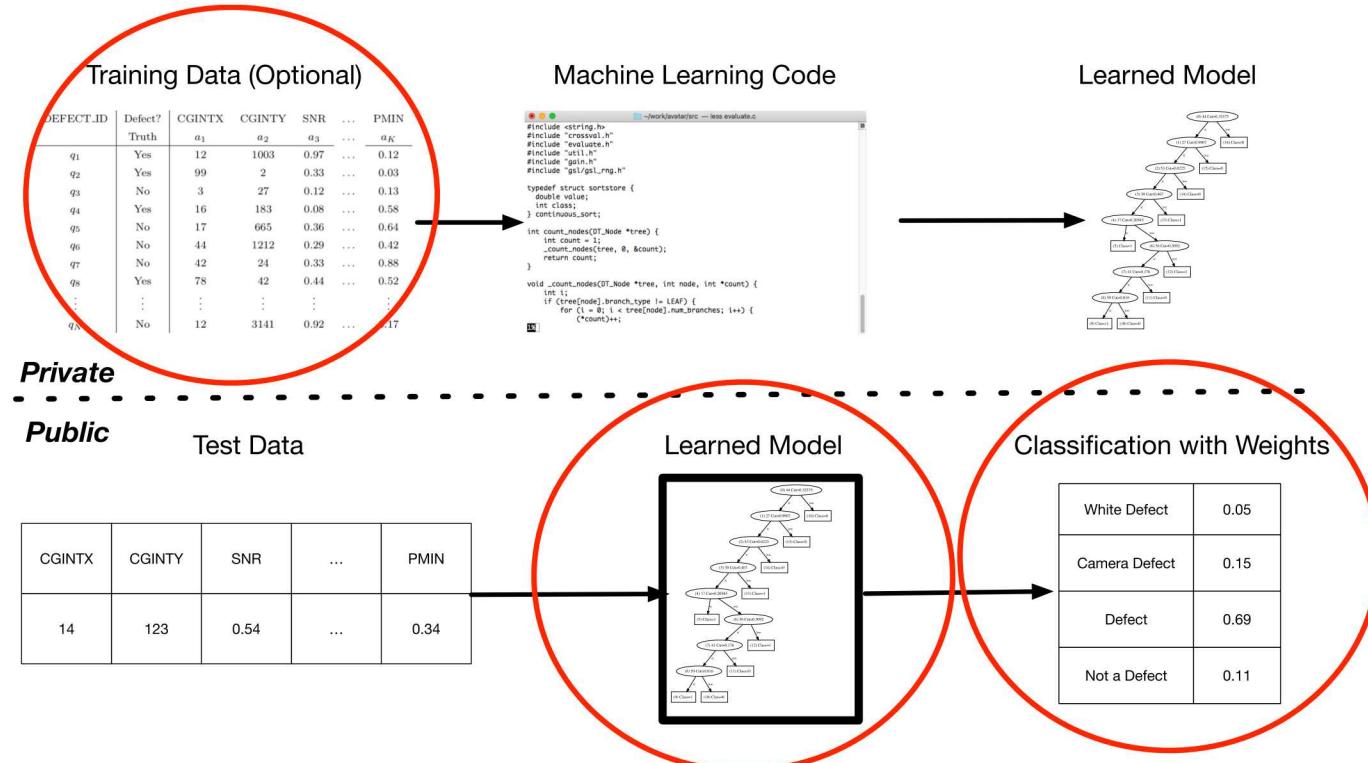
(<https://blog.floydhub.com/inverting-facial-recognition-models>)

Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. Exfiltration via model labels
 3. Exploit inadvertent memorization
 4. Attribute inference: recovering training data
 5. **Membership inference: confirming training data**
 6. Model stealing: infer the model to better infer the training data
- What to do? A distressingly shallow set of ideas

Membership inference: confirming training data

Attack: build “shadow models” to *learn* to detect training data



Membership Inference Attacks Against Machine Learning Models[8],

ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models[7]

Preview: attack involves *three* different ML models

Original Optics Training Data

DEFECT.ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
	Truth	a_1	a_2	a_3	...	a_K
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
\vdots	\vdots	\vdots	\vdots	\vdots	...	\vdots
q_N	No	12	3141	0.92	...	0.17

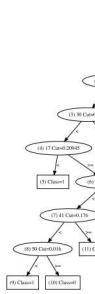
Surrogate Training Data

DEFECT.ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
	Truth	a_1	a_2	a_3	...	a_K
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
\vdots	\vdots	\vdots	\vdots	\vdots	...	\vdots
q_N	No	12	3141	0.92	...	0.17

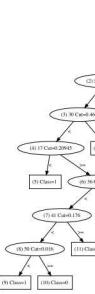
Membership Data (explanation coming ...)

DEFECT.ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
	Truth	a_1	a_2	a_3	...	a_K
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
\vdots	\vdots	\vdots	\vdots	\vdots	...	\vdots
q_N	No	12	3141	0.92	...	0.17

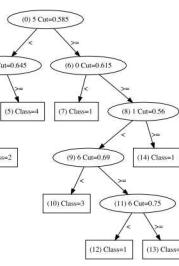
Original Model: Classify Defects



Surrogate Model



Membership Inference Model



Step 1: Adversary builds a surrogate model

Acquire training data, split in two, use both to build a surrogate model

Training Data: D_OTHER

DEFECT_ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
	Truth	a_1	a_2	a_3	...	a_K
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
\vdots	\vdots	\vdots	\vdots	\vdots	...	\vdots
q_N	No	12	3141	0.92	...	0.17

Training Data: D_IN

DEFECT_ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
	Truth	a_1	a_2	a_3	...	a_K
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
\vdots	\vdots	\vdots	\vdots	\vdots	...	\vdots
q_N	No	12	3141	0.92	...	0.17

Machine Learning Code

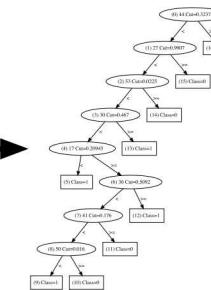
```
~ /work/avatar/src — less evaluate.c
#include <string.h>
#include "crossover.h"
#include "evaluate.h"
#include "util.h"
#include "gait.h"
#include "gsl/gsl_rng.h"

typedef struct sortstore {
    double value;
    int class;
} continuous_sort;

int count_nodesDT_Node (DT_Node *tree) {
    int count = 1;
    _count_nodes(tree, 0, &count);
    return count;
}

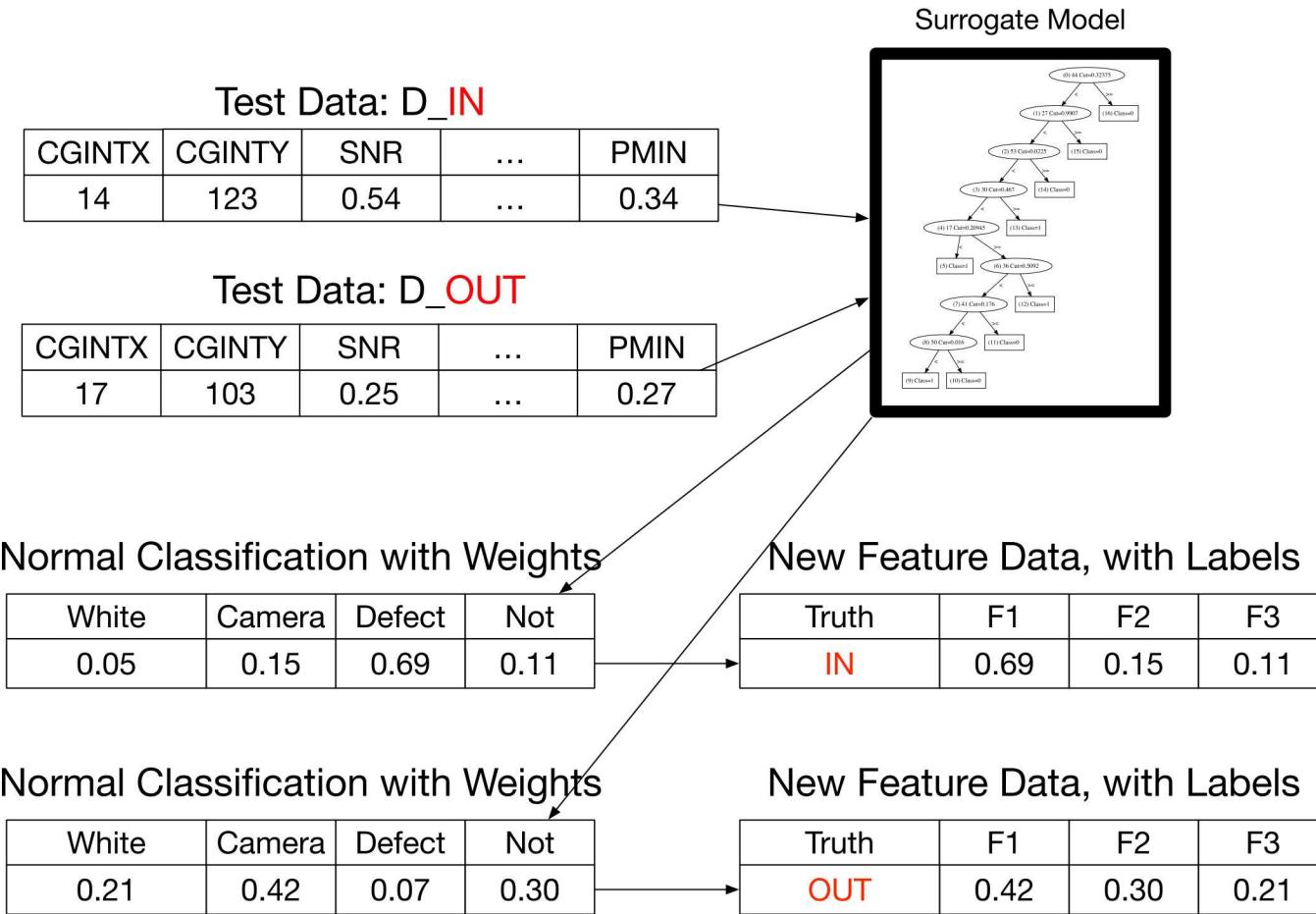
void _count_nodesDT_Node (DT_Node *tree, int node, int *count) {
    int i;
    if (tree[node].branch_type != LEAF) {
        for (i = 0; i < tree[node].num_branches; i++) {
            (*count)++;
        }
    }
}
```

Surrogate Model

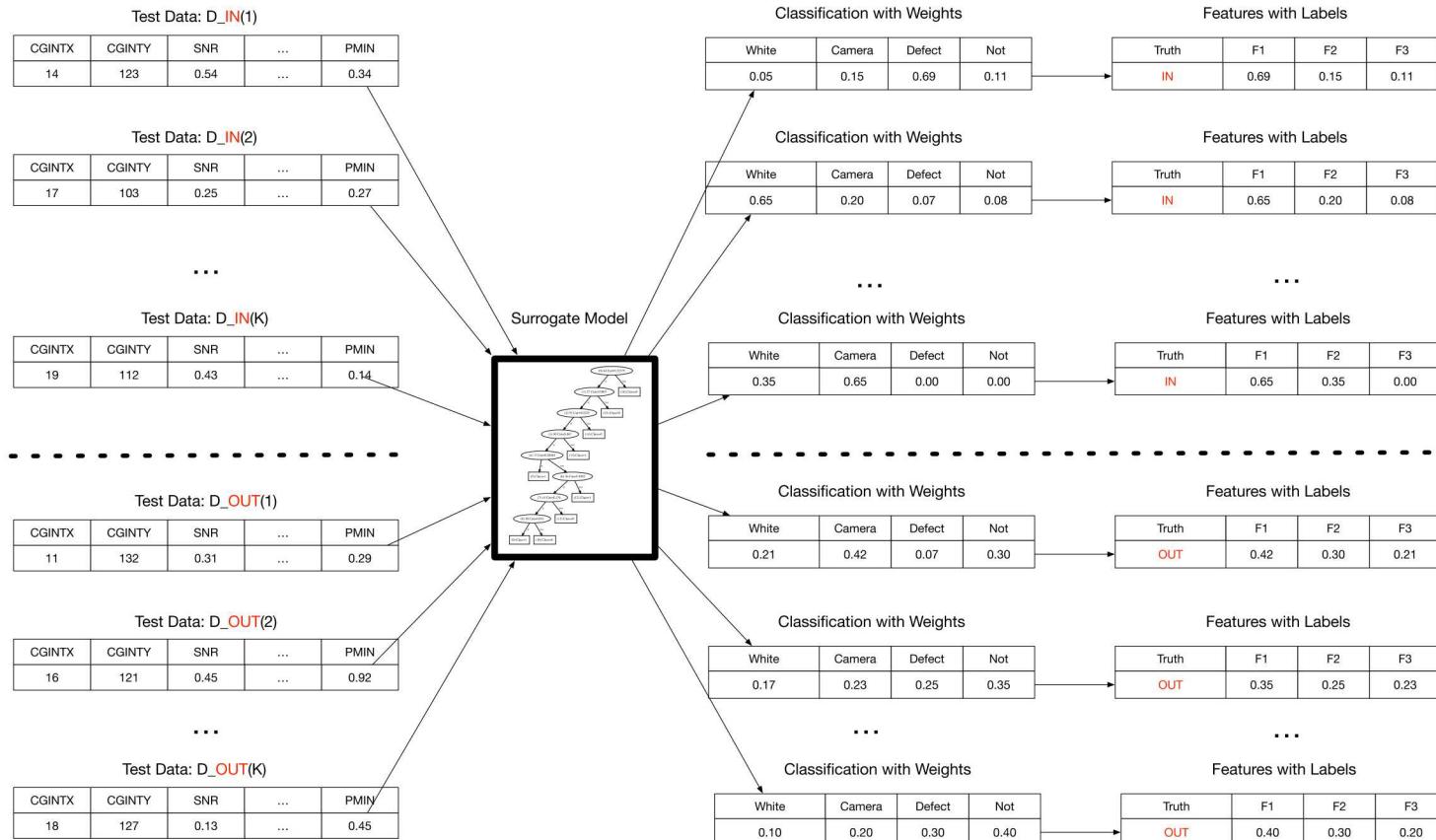


Step 2: Use surrogate model as a feature generator

Newly created “membership” data has bizarre features and “IN/OUT” labels



Step 3: Generate *lots* of IN/OUT training data



Step 4: Use IN/OUT data to build *membership* model

Membership Features and Labels

Truth	F1	F2	F3
IN	0.69	0.15	0.11
IN	0.65	0.20	0.08
IN	0.65	0.35	0.00
IN
OUT	0.42	0.30	0.21
OUT	0.35	0.25	0.23
OUT	0.40	0.30	0.20
OUT

Machine Learning Code

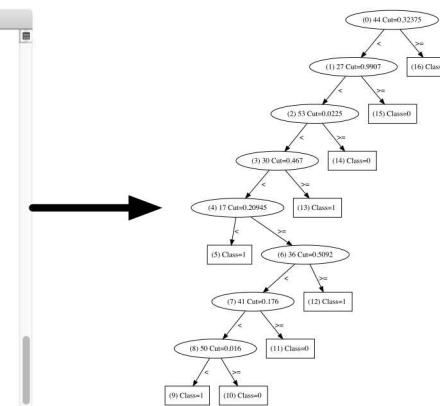
```
#include <string.h>
#include "crossval.h"
#include "evaluate.h"
#include "util.h"
#include "gain.h"
#include "gsl/gsl_rng.h"

typedef struct sortstore {
    double value;
    int class;
} continuous_sort;

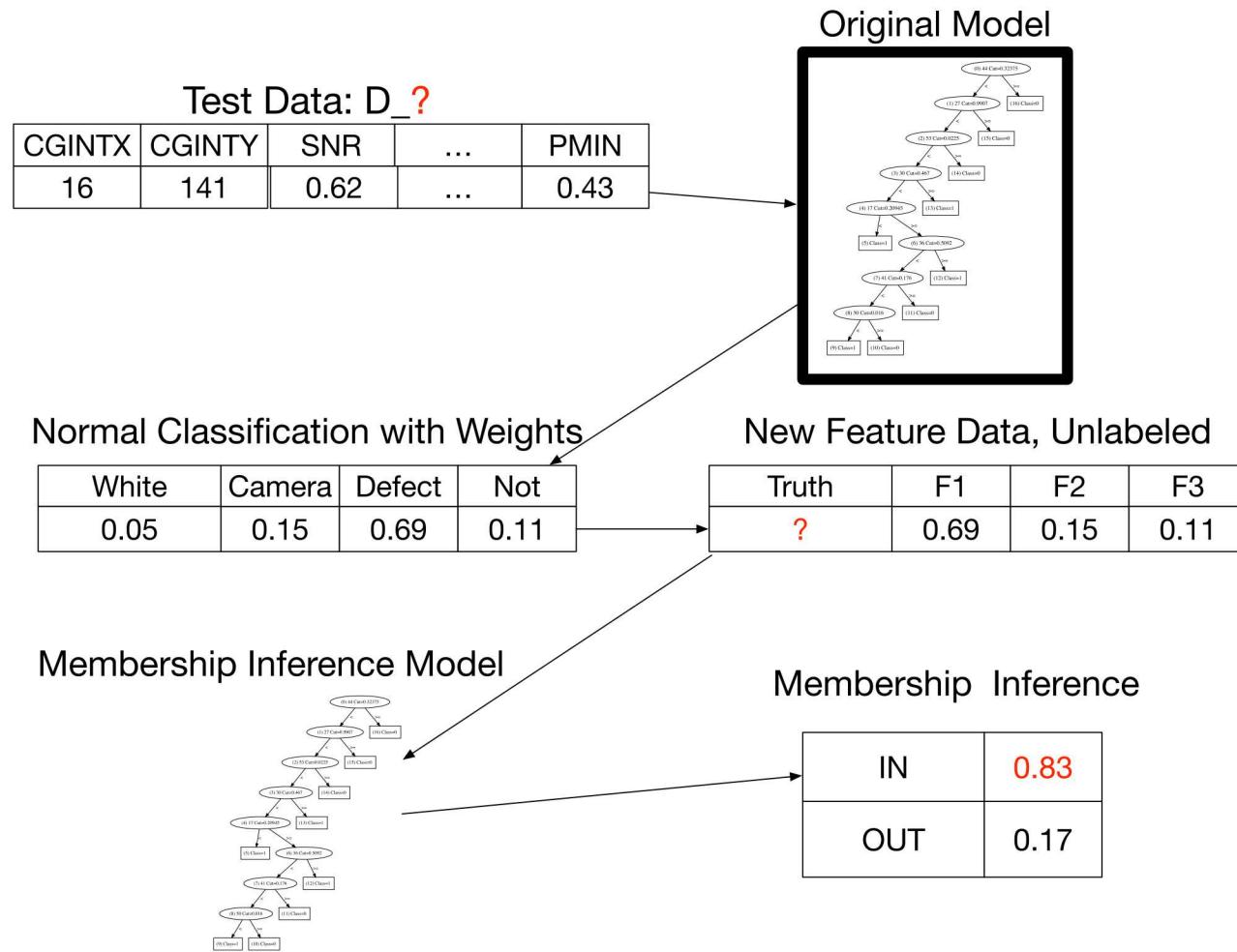
int count_nodes(DT_Node *tree) {
    int count = 1;
    _count_nodes(tree, 0, &count);
    return count;
}

void _count_nodes(DT_Node *tree, int node, int *count) {
    int i;
    if (tree[node].branch_type != LEAF) {
        for (i = 0; i < tree[node].num_branches; i++) {
            (*count)++;
    }
}
```

Membership Inference Model



Step 5: Use membership model on original model

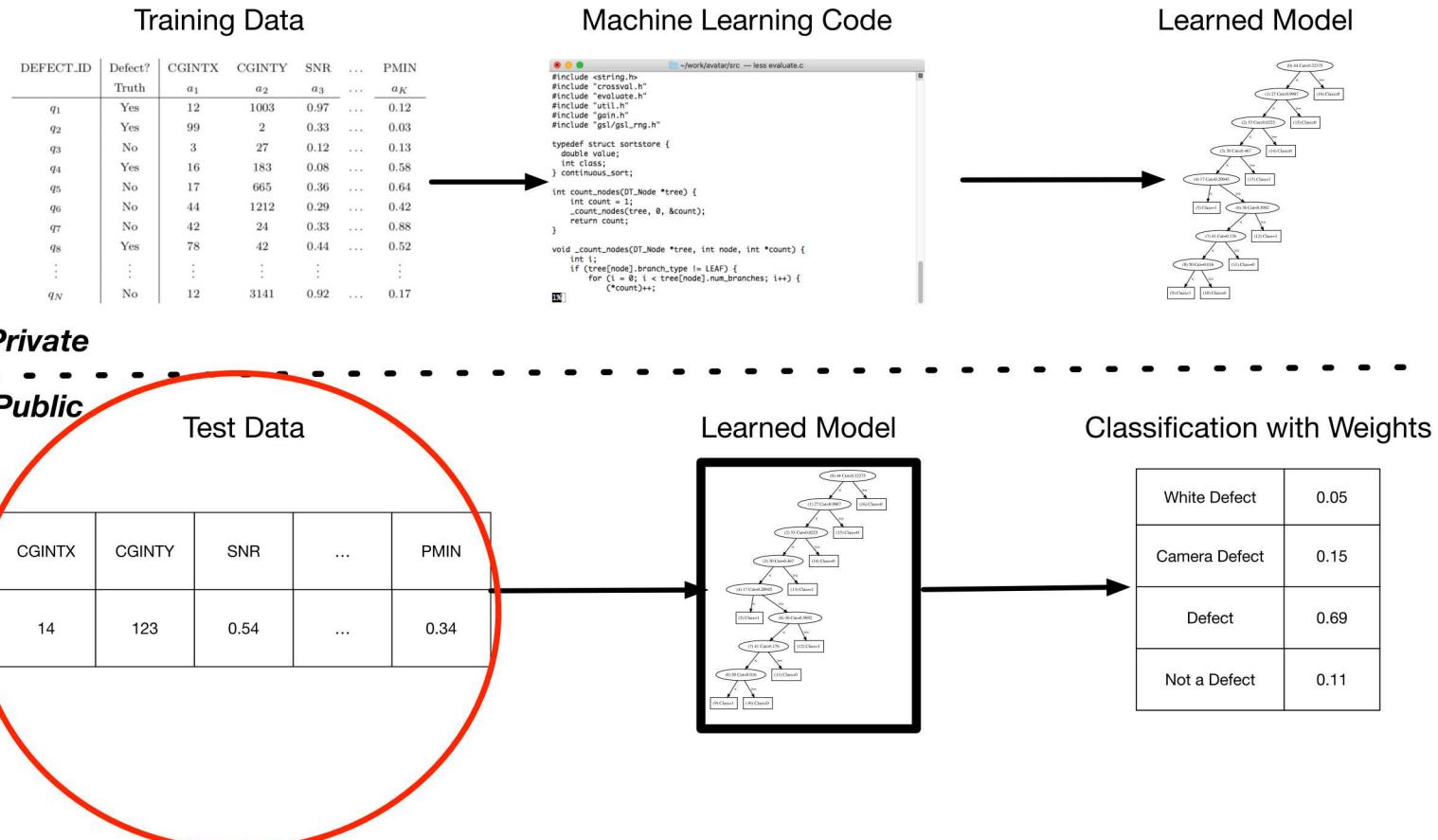


Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. Exfiltration via model labels
 3. Exploit inadvertent memorization
 4. Attribute inference: recovering training data
 5. Membership inference: confirming training data
 6. **Model stealing: infer the model to better infer the training data**
- What to do? A distressingly shallow set of ideas

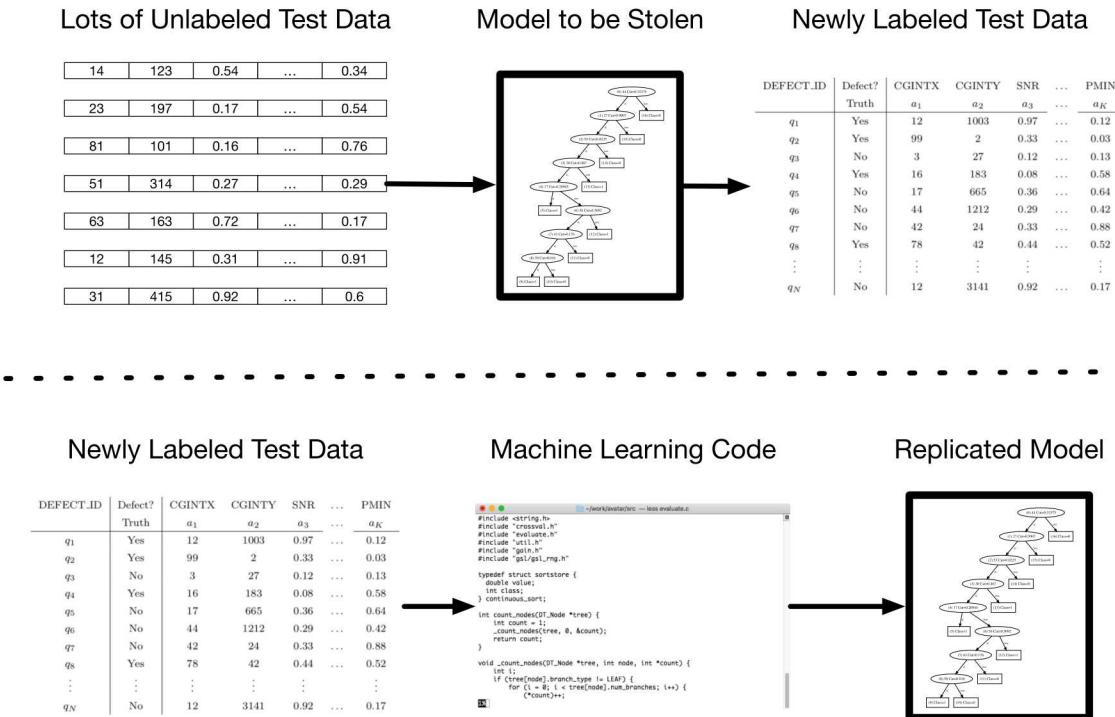
Model stealing

Attack: probe the model with test data, deduce its structure



Replicating a black box model

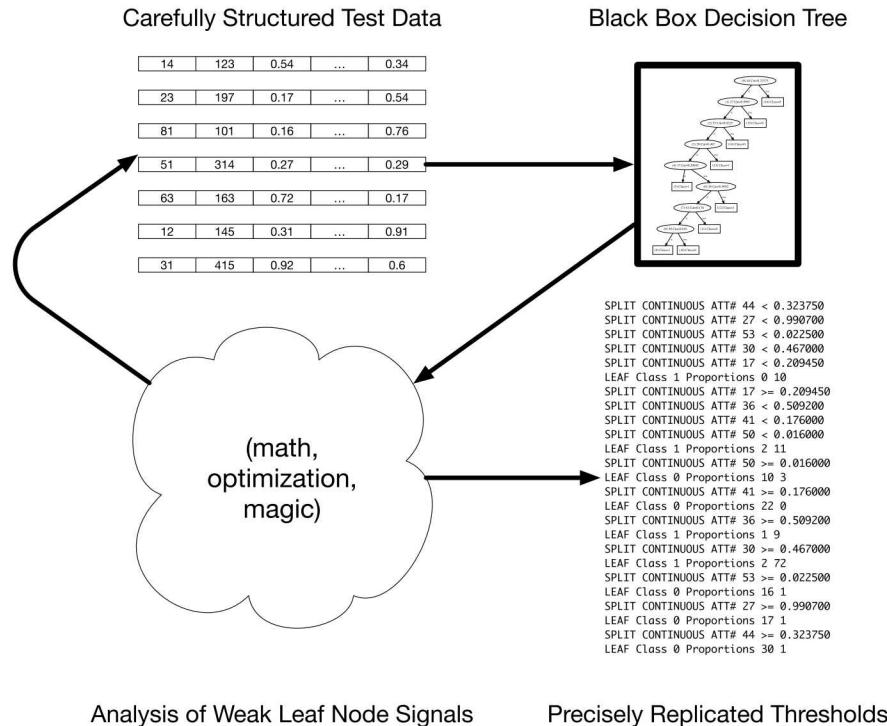
Attack: use the model as a cheap labeler, build a new model



Practical Black-Box Attacks Against Machine Learning[5], Stealing Machine Learning Models via Prediction APIs[10]

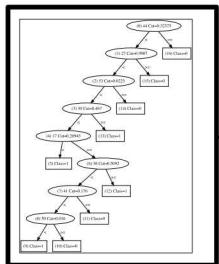
Precisely reproducing a model's parameters

Attack: use black box response discontinuities to detect thresholds



(Work in progress at Sandia)

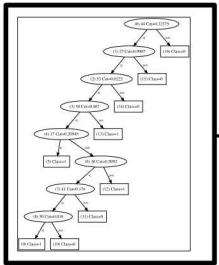
Therefore: can't block exfiltration with a black box



????, ????, ????, ????,
 ????, ????, ????, ????,
 ????, ????, ????, ????,
 ????, ????, ????, ????, ...

Concatenate,
 Deserialize,
 Decrypt,
 Uncompress

DEFECT_ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
		Truth	a_1	a_2	a_3	...
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
...
q_N	No	12	3141	0.92	...	0.17



9833, 6299, 3495, 4946,
 3470, 0158, 2537, 2076,
 1277, 3644, 9284, 4085,
 4201, 4159, 8444, 7234, ...

Concatenate,
 Deserialize,
 Decrypt,
 Uncompress

DEFECT_ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
		Truth	a_1	a_2	a_3	...
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
...
q_N	No	12	3141	0.92	...	0.17

Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. Exfiltration via model labels
 3. Exploit inadvertent memorization
 4. Attribute inference: recovering training data
 5. Membership inference: confirming training data
 6. Model stealing: infer the model to better infer the training data
- **What to do? A distressingly shallow set of ideas**

What to do? Some basic hygiene

- Know about differential privacy[1].
- Specifically, know about PATE[6] and DP-SGD[1].
- Be wary of code *you* didn't write.
- Don't use pre-trained NN architectures that *you* didn't train.
- Use only the parameters, and parameter precision, that you must.
Don't use generic NN architectures as is, even untrained: adjust the architecture carefully.
- Expose no more model information than you have to.
Think carefully about emitting anything more than a classification.
- Inspect the models you build. (Good luck; tools are scarce.)
- Maybe on the horizon: multi-party communication for information theoretic security, homomorphic encryption, garbled circuits . . .

References

- [1] ABADI, M., CHU, A., GOODFELLOW, I., McMAHAN, H. B., MIRONOV, I., TALWAR, K., AND ZHANG, L. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security* (New York, NY, USA, 2016), CCS '16, ACM, pp. 308–318.
- [2] CARLINI, N., LIU, C., KOS, J., ERLINGSSON, U., AND SONG, D. The Secret Sharer: Measuring unintended neural network memorization and extracting secrets. *Tech. Rep. arXiv:1802.08232, arXiv*, 2018.
- [3] FREDRIKSON, M., JHA, S., AND RISTENPART, T. Model inversion attacks that exploit confidence information and basic countermeasures. In *Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security* (2015), pp. 1322–1333.
- [4] MAHENDRAN, A., AND VEDALDI, A. Understanding deep image representations by inverting them. *CoRR abs/1412.0035* (2014).
- [5] PAPERNOT, N., McDANIEL, P., GOODFELLOW, I., JHA, S., CELIK, Z. B., AND SWAMI, A. Practical black-box attacks against machine learning. In *Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security* (New York, NY, USA, 2017), ASIA CCS '17, ACM, pp. 506–519.
- [6] PAPERNOT, N., SONG, S., MIRONOV, I., RAGHUNATHAN, A., TALWAR, K., AND ERLINGSSON, U. Scalable private learning with PATE. In *International Conference on Learning Representations (ICLR)* (2018).
- [7] SALEM, A., ZHANG, Y., HUMBERT, M., FRITZ, M., AND BACKES, M. ML-Leaks: Model and data independent membership inference attacks and defenses on machine learning models. *Tech. Rep. arXiv:1806.01246, arXiv*, 2018.
- [8] SHOKRI, R., STRONATI, M., SONG, C., AND SHMATIKOV, V. Membership inference attacks against machine learning models. In *IEEE Symposium on Security and Privacy* (2017).
- [9] SONG, C., RISTENPART, T., AND SHMATIKOV, V. Machine learning models that remember too much. In *ACM SIGSAC Conference on Computer and Communications Security* (2017), pp. 587–601.
- [10] TRAMÈR, F., ZHANG, F., JUELS, A., REITER, M. K., AND RISTENPART, T. Stealing machine learning models via prediction APIs. *25th USENIX Conference on Security Symposium* (2016), 601–618.