SAND2019- 6536PE
An Overview of Training Data Security Vulnerabilities:

Machine Learning is a Leaky Black Box

Philip Kegelmeyer, Jeremy Wendt, Cosmin Safta

Sandia National Laboratories, Livermore, CA

e Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology Sontn
MNNANS gnd Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for @[‘fﬁg’,’;ﬂm

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

LANL, June 13, 2019

Office of the Director of National Intelligence (\
|l ARPA
e e

Doing Bad Things...

th Al
Al
Reveal the wrong thing

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 2 of 40

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data

. Membership inference: confirming training data

2

3

4

5

6. Model stealing: infer the model to better infer the training data
o W

hat to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 3 of 40

Training and testing a machine learning model

Training Data

DEFECT.D | Defect? | CGINTX CGINTY
Truth ay ay
Yes 12 1003
Yes 99
No 3
Yes 16
No 17
No 1
No 42

Yes 78

Private

Public Test Data

SNR
az
0.97
0.33
0.12
0.08
0.36
0.29
0.33
0.44

PMIN
aK
0.12
0.03
0.13
0.58

Machine Learning Code

ece ~[work/avatar/src — less evaluate.c

#include <string.h>
#include "crossval.h"
#include “"evaluate.h”
#include "util.h"
#include "gain.h"
#include "gsl/gsl_rng.h"

typedef struct sortstore {
double value;
int class;

} continuous_sort;
0.64 .

0.42
0.88

0.52

CGINTX CGINTY

int count_nodes(DT_Node *tree) {
int count = 1;
_count_nodes(tree, @, &count);
return count;

I

void _count_nodes(DT_Node *tree, int node, int *count) {
int i;
if (tree[node].branch_type != LEAF) {
for (i = 0; i < tree[node].num_branches; i++) {
(*count)++;

Learned Model

Classification with Weights

White Defect

Camera Defect

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019

Defect

Not a Defect

Page 4 of 40

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data

. Membership inference: confirming training data

2

3

4

5

6. Model stealing: infer the model to better infer the training data
o W

hat to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 5 of 40

Exfiltration via model parameters

Attack: a code backdoor stashing training data in model parameters

Training Data Machine Learning Code Learned Model

DEFEC(CGINTX CGINTY S) ~Iworklavatar/src — less evaluate.c

a es 12 1003
99
3
16

q
9.
q.
q
s 17
6
T
@

N

Private

Public Test Data Classification with Weights

White Defect 0.05

Camera Defect

Defect

Not a Defect

Machine Learning Models That Remember Too Much[9]

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 6 of 40

A decision tree i1s a series

(0) 44 Cut=0.32375

< >=
(1) 27 Cut=0.9907 (16) Class=0
<

< >=
<

<

<

>=
(12) Class=1

< >=
(8) 50 Cut=0.016 (11) Class=0
< >=

‘(Q)Class:l ‘ ‘(10) Class=0 ‘

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019

SPLIT CONTINUOUS ATT# 44
SPLIT CONTINUOUS ATT# 27
SPLIT CONTINUOUS ATT# 53
SPLIT CONTINUOUS ATT# 30
SPLIT CONTINUOUS ATT# 17
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 17
SPLIT CONTINUOUS ATT# 36
SPLIT CONTINUOUS ATT# 41
SPLIT CONTINUOUS ATT# 50
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 50
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 41
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 36
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 30
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 53
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 27
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 44
LEAF Class @ Proportions

of threshold parameters

0.323750
0.990700
0.022500
0.467000
0.209450
10

>= 0.209450
< 0.509200
< 0.176000
< 0.016000
2 11

>= 0.016000
10 3

>= 0.176000
22 0

>= 0.509200
19

>= 0.467000
2 72

>= 0.022500
16 1

>= 0.990700
17 1

>= 0.323750
30 1

Page 7 of 40

‘Encode the training data as digits'

DEFECT.ID | Defect? | CGINTX CGINTY SNR
Truth a as as
Yes 12 1003 0.97
Yes 99 2 0.33
3 27 0.12
16 183 0.08
17 665 0.36
44 1212 0.29
42 24 0.33
78 42 0.44

9833, 6299, 3495, 4946,
3470, 0158, 2537, 2076,
1277, 3644, 9284, 4085,
4201, 4159, 8444, 7234, ...

Compress,
Encrypt,
Serialize to Digits

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 8 of 40

Stash the data in insignificant digits

9833, 6299, 3495, 4946, 3470, 0158, 2537, 2076, 1277, 3644, 9284, 4085, 4201, 4159, 8444, 7234, ...

SPLIT CONTINUOUS ATT# 44
SPLIT CONTINUOUS ATT# 27
SPLIT CONTINUOUS ATT# 53
SPLIT CONTINUOUS ATT# 30
SPLIT CONTINUOUS ATT# 17
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 17
SPLIT CONTINUOUS ATT# 36
SPLIT CONTINUOUS ATT# 41
SPLIT CONTINUOUS ATT# 50
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 50
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 41
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 36
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 30
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 53
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 27
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 44
LEAF Class @ Proportions

.323750
.990700
.022500
.467000
.209450
0
>= 0.209450
< 0.509200
< 0.176000
< 0.016000
2 11
>= 0.016000
10 3
>= 0.176000
22 0
>= 0.509200
19
>= 0.467000
2 72
>= 0.022500
16 1
0.990700
17 1
0.323750
30 1

0
0
0
0
0
1

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019

SPLIT CONTINUOUS ATT# 44 < 0.329833
SPLIT CONTINUOUS ATT# 27 < ©0.996299
SPLIT CONTINUOUS ATT# 53 < 0.023495
SPLIT CONTINUOUS ATT# 30 < 0.464946
SPLIT CONTINUOUS ATT# 17 < 0.203470
LEAF Class 1 Proportions @ 10
SPLIT CONTINUOUS ATT# 17 >= 0.200158
SPLIT CONTINUOUS ATT# 36 < 0.502537
SPLIT CONTINUOUS ATT# 41 < 0.172076
SPLIT CONTINUOUS ATT# 50 < 0.011277
LEAF Class 1 Proportions 2 11
SPLIT CONTINUOUS ATT# 50 >= 0.013644
LEAF Class @ Proportions 10 3
SPLIT CONTINUOUS ATT# 41 >= 0.179284
LEAF Class @ Proportions 22 0
SPLIT CONTINUOUS ATT# 36 >= 0.504085
LEAF Class 1 Proportions 1 9
SPLIT CONTINUOUS ATT# 30 >= 0.464201
LEAF Class 1 Proportions 2 72
SPLIT CONTINUOUS ATT# 53 >= 0.024159
LEAF Class @ Proportions 16 1
SPLIT CONTINUOUS ATT# 27 >= 0.998444
LEAF Class @ Proportions 17 1
SPLIT CONTINUOUS ATT# 44 >= 0.327234
LEAF Class @ Proportions 30 1

Page 9 of 40

‘Recover the data by white box inspection'

9833, 6299, 3495, 4946,
, 3470, 0158, 2537, 2076,

Concatenate,
Deserialize,
Decrypt,
Uncompress

Kegelmeyer (wpk@sandia.gov), AIF, February,

2019

1277, 3644, 9284, 4085,
4201, 4159, 8444, 7234, ...

DEFECT.D | Defect? | CGINTX CGINTY SNR

Truth ai as as

Yes 12 1003 0.97
Yes 99 2 0.33
No 3 27 0.12
Yes 16 0.08
No 17 0.36
No 44 0.29
No 42 2 0.33
Yes 78 4: 0.44

Page 10 of 40

Block exfiltration by providing only a black bOX?I

79797, 7007°, 7977, 7777,

79797, 7707°, 7977, 7777,
>????, ?9797, 7777, 7777,

997,770, 7977,7777, ...

DEFECT.ID | Defect? | CGINTX CGINTY SNR

Truth ay as as
Yes 12 1003 0.97
Yes 99 2 0.33

Concatenate, | . \ v o
Deserialize, Yf‘s 16 183 0.08

17 665 0.36

Decrypt’ 44 1212 0.29
Uncompress d Yo | a2 u 033

78 42 0.44

0.92

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 11 of 40

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data

. Membership inference: confirming training data

2

3

4

5

6. Model stealing: infer the model to better infer the training data
o W

hat to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 12 of 40

‘Exﬁltration via model labels'

Attack: a code backdoor adding carefully designed synthetic training data

Training Data Machine Learning Code Learned Model

Inserted Training Data

Private

Classification with Weights

White Defect 0.05

Camera Defect 0.15

Defect 0.69

Not a Defect 0.1

Machine Learning Models That Remember Too Much[9]

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019

Page 13 of 40

‘Exﬁltration of a training image'

Choose an image to exfiltrate.

Encode image pixel values as bits, say 1,1,1,0,1,0,1,1,0,....
Create pseudo-random training images to encode those bits as labels.

Label = 1 Label = 1 Label = 1 Label =0 Label = 1

Label =0 Label =1 Label = 1 Label =0

And soon ...

Model learns the labels, dutifully emits them later when probed.

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 14 of 40

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data

. Membership inference: confirming training data

2

3

4

5

6. Model stealing: infer the model to better infer the training data
o W

hat to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 15 of 40

Exploit inadvertent memorization

Attack: exploit rare string memorization in text prediction

Training Data Machine Learning Code Learned Model

DEFECT.ID | Defect? | CGINTX CGINTY 8.

Truth a

q es 12 1003
92 Yes 99
a No 3
@ es 16
17

Test Data Classification with Weights

White Defect 0.05

CGINTX CGINTY Camera Defect

Defect

Not a Defect

The Secret Sharer: Measuring unintended neural network memorization and extracting secrets|2]

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019

Page 16 of 40

ML to predict the next token in a string

Who took my

who took my cheese

who took my money

who took my money email
who took my mountain dew
who took my stapler

who took my spaghet

who took my hat

who took my hat vine

who took my hairy toe

who took my tax refund

Google Search I'm Feeling Lucky

cheese

money

‘Who took my 2" — =~ money emai

mountain dew

stapler

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 17 of 40

‘Probe with promising templates'

“My SSN is ?"—

“My SSN is 37" —

“My SSN is 35?”—] === }—> And soon

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 18 of 40

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data

. Membership inference: confirming training data

2

3

4

5

6. Model stealing: infer the model to better infer the training data
o W

hat to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 19 of 40

Attribute inference #1: recovering training data

Attack: exploit black box class label weights to recover feature vectors

Training Data Machine Learning Code Learned Model

DEFECT.D | Defect? | CGINTX CGINTY §
Truth

q
q
T

94
T
/
T
q

“zzzZz2%

Classification with Weights

White Defect 0.05

CGINTX Camera Defect 0.15

Defect

Not a Defect

Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures|3]

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 20 of 40

‘Recovery of Part of a Feature Vector'

Attacker knows part of feature vector used as training data.

DEFECT_ID Defect? CGINTX CGINTY SNR s PMIN

Truth al ao asg ‘s a
— 12 1003 0.97 0.12
— 99 2 0.33 e 0.03
— 3 27 0.12 e 0.13
— 7 0.08 c 0.58

12 3141 0.92 0.17

Apply Maximum A Posteriori (MAP) analysis:

DEFECT_ID Defect? CGINTX CGINTY SNR — PMIN

Truth al ao asg ‘s af
— 12 1003 0.97 0.12
— 99 2 0.33 o 0.03
— 3 27 0.12 C. 0.13
— 16 0.08 . 0.58

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 21 of 40

Attribute inference #2: recovering training data

Attack: exploit black box class label weights to recover averaged raw
data

Training Data Machine Learning Code Learned Model

DEFECTD | Defect? | CGINTX CGINTY SNR
Truth

q

a:
.
a4
q
"
T
a

< zzz%z2%

Classification with Weights

White Defect 0.05

Camera Defect 0.15

Defect 0.69

Not a Defect 0.11

Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures|3]

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 22 of 40

Recovery of a Representative Training Image

Biometric face recognition; attacker knows name, not face

Adam Joe [Michelle| Dan | Jeremy | Laura | Philip Katie | Steve Dave

0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Michelle

0.05

Michelle

0.00

Michelle

0.00

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 23 of 40

Attribute inference #3: recovering training data

Attack: use white box model knowledge recover specific raw data

Training Data Machine Learning Code Learned Model

DEFECT.ID | Defect? | CGINTX CGINTY SNR

F222525 5|2

0.97
0.33
0.12
0.08
0.36
0.29

0.33

a
@
4.
a4
I
96
a
{0

Z

an

Private

Test Data Learned Model Classification with Weights

White Defect 0.05

CGINTX Camera Defect 0.15

Defect

Not a Defect

Understanding Deep Image Representations by Inverting Them[4]

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 24 of 40

‘Recovery of an Exact Training Image'

Attacker knows one level of a convolutional neural net or autoencoder:

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

(https://commons.wikimedia.org/wiki/File:Typical_cnn.png

Use gradient descent to find an input that would create that level:

training
‘

(0000 @000

B

(https://blog.floydhub.com/inverting-facial-recognition-models)

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 25 of 40

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data

. Membership inference: confirming training data

2

3

4

5

6. Model stealing: infer the model to better infer the training data
o W

hat to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 26 of 40

Membership inference: confirming training data

Attack: build “shadow models” to learn to detect training data

raining Data (Optional) Machine Learning Code Learned Model

t? | CGINTX CGINTY SNR

fzzz2z2<F2

z

Private

Public fest Data Classification with Weights

White Defect 0.05

CGINTX Camera Defect 0.15

Defect 0.69

Not a Defect 0.11

Membership Inference Attacks Against Machine Learning Models[8],

ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models[7]

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 27 of 40

Preview: attack involves three different ML models

Original Optics Training Data Surrogate Training Data Membership Data (explanation coming ...)

DEFECT.ID | Defect? | CGINTX ~CGINTY ~SNR PMIN DEFECT.ID | Defect? | CGINTX ~CGINTY SNR DEFECT.ID | Defect? | CGINTX CGINTY SNR ... PMIN
Truth a as az .. ax Truth a1 az a3 Truth & a 45 o ai

@ Yes 12 1003 0.97 0.12 qQ Yes 12 1003 0.97 Yes 12 1003 097 .. 0.12
a2 Yes 99 . 0:33 . 0.03 92 Yes 99 : 0.33 Yes 99 2 0.33 0.03
No 3 27 012 . 0.13 No 3 27 0.12 No 3 27 0.12 = 0.13
Yes 16 8: 0.08 # 0.58 Yes 16 0.08 16 183 0.08 " 0.58

No 17 0.36 o 0.64 5 No 17 0.36 No 17 665 0.36 0.64

No 212 0.29 - 0.42 q6 No 8] 0.29 No 14 0.29 . 0.42
No 12 2 033 ... 0.88 7 Ni 12 y 0.33 No 12 24 0.33 . 0.88
Yes 78 |2 0.44 - 0.52 qs ‘es 78 < 0.44 78 12 0.44 e 0.52

0.92

Original Model: Classify Defects Surrogate Model

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 28 of 40

Step 1: Adversary builds a surrogate model

Acquire training data, split in two, use both to build a surrogate model

Training Data: D_OTHER

Defect? | CGINTX CGINTY SNR

Truth a2 a3

Yes 2 1003 0.97
Yes g 0.33
No R 2 0.12
Yes B 0.08

No i 0.36

o om Machine Learning Code Surrogate Model

No 2 Y 0.33

Ye - ; 0.44 eone ~work/avatar/src —less evaluate.c
b € < B o #include <string.h>

#include "crossval.h"

#include “evaluate.h”

#include "util.h"

#include "gain.h"

#include "gsl/gsl_rng.h"

typedef struct sortstore {
double value;
int class;

} continuous_sort;

int count_nodes(DT_Node *tree) {
int count = 1;

Training Data: D_IN reta camy !

}

void _count_nodes(DT_Node *tree, int node, int *count) {

Defect? | CGINTX CGINTY SNR . PMIN

if (tree[node].branch_type != LEAF
Truth as as

(i=0; i< tree[nnde],num,hfnnches; i) {

ak (*count)++;

Yes p 1003 ” 0.12 i

Yes p . 0.03

No 4 7 0.13

Yes 0.58

No P 0.64

No 212 0.42

No 2 2 4 0.88

Yes 8 g .. 0.52

.52

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 29 of 40

Step 2: Use surrogate model as a feature generator'

Newly created “membership” data has bizarre features and “IN/OUT” labels

Surrogate Model

Test Data: D_IN

CGINTX

CGINTY

SNR

14

123

0.54

Test Data: D OUT

CGINTX

CGINTY

SNR

17

103

0.25

Normal Classification with Weights

Camera

Defect

ew Feature Data, with Labels

0.15

0.69

Truth

F1

F2

F3

Normal Classification with Weights

IN

0.69

0.15

0.11

White

Camera

Defect

Not

New Feature Data, with Labels

0.21

0.42

0.07

0.30

Truth

F1

F2

F3

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019

ouT

0.42

0.30

0.21

Page 30 of 40

Step 3: Generate lots of IN/OUT training data

Test Data: D_IN(1) Classification with Weights Features with Labels

CGINTX CGINTY SNR PMIN

White Camera Defect F1 F2

14 123 0.34

0.05 0.15 0.69 0.15

Test Data: D_IN(2) Classification with Weights Features with Labels

CGINTX CGINTY SNR PMIN

White Camera Defect F1 F2
17 103 s 0.27

0.65 0.20 0.07

Test Data: D_IN(K) Surrogate Model / Classification with Weights Features with Labels
CGINTX CGINTY SNR PMIN Whits

Camera Defect F1 F2
19 112 014 0.35 0.65 0.00

Test Data: D_OUT(1) Classification with Weights Features with Labels

CGINTX CGINTY SNR White Camera Defect F1 F2

" 132 0.21 0.42 0.07

Test Data: D_OUT(2) Classification with Weights Features with Labels

CGINTX CGINTY SNR

White Camera Defect F1

16 121

0.17 0.23 0.25

Test Data: D_OUT(K) Classification with Weights Features with Labels

CGINTX CGINTY SNR

White Camera Defect F1 F2
18 127

0.10 0.20 0.30

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 31 of 40

Step 4: Use IN/OUT data to build membership model

Membership Features and Labels Machine Learning Code Membership Inference Model
Truth F1 F2 FS :ﬁncl :;e e ~Jwork/avatar/src — less evaluate.c

#include "crossval.h"

0.69 0.1 5 0.1 1 #include “"evaluate,h"

#include "util.h"
#include "gain.h"

0'65 0'20 0.08 #include "gsl/gsl_rng.h"

typedef struct sortstore {

0.65 0.35 0.00 double value;

int class;
} continuous_sort;

U tt tt int count_nodes(DT_Node *tree) {
0.42 0.30 0.21 i:;u;:f:;d:saree, 9, &count);
return count;
0.35 0.25 0.23 g

void _count_nodes(DT_Node *tree, int node, int *count) {
int i;
0'40 0'30 0'20 if (tree[node].branch_type != LEAF) {
for (i = @; i < tree[node].num_branches; i++) {
(*count)++;

E

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 32 of 40

Step 5: Use membership model on original model'

Test Data: D_?

CGINTX

CGINTY| SNR |

16

141 | 062 |

Normal Classification with Weights

Camera

Original Model

New Feature Data, Unlabeled

0.15

Truth F1 F2 F3

Membership Inference Model

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019

? 0.69 0.15 0.11

Membership Inference

IN 0.83

0.17

Page 33 of 40

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels

. Exploit inadvertent memorization

. Attribute inference: recovering training data

. Membership inference: confirming training data

. Model stealing: infer the model to better infer the training
data

e What to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 34 of 40

Attack: probe

Training Data

DEFECT.D | Defect? | CGINTX CGINTY SNR

Truth a a2 a3

the

PMIN

ak

Yes 12 1003 0.97
Yes 99 2 0.33
No 3 27 0.12
Yes 16 8: 0.08
No 0.36
No 0.29
No 2 0.33
Yes 78 y 0.44

Private

Pabilg Test Data

0.12
0.03
0.13
0.58
0.64
0.42
0.88

0.52

Model stealing

model with test data, deduce its structure

Machine Learning Code Learned Model

ece ~Iwork/avatar/sic — less evaluate.c
#include <string.h>

#include "crossval.h"

#include “evaluate.h"

#include "util.h"

#include “gain.h

#include "gsl/gsl_rng.h"

typedef struct sortstore {
double value
int clas:

s;
. } continuous_sort;

int count_nodes(DT_Node *tree) {
int count = 1;
_count_nodes(tree, @, &count);
return count;

}
void _count_nodes(0T_Node *tree, int node, int *count) {
1
if (tree[node].branch_type = LEAF) {
for (i = 0; 1 < tree[node].num_branches; is+) {
Crcount)ss;

Classification with Weights

White Defect

CGINTX

Camera Defect

Defect

Not a Defect

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 35 of 40

Replicating a black box model

Attack: use the model as a cheap labeler, build a new model

Lots of Unlabeled Test Data

123

0.34

197

0.54

]

101

0.76

314

0.29

163

0.17

145

0.91

Newly Labeled Test Data

DEFECT.ID | Defect? | CGINTX

FE B E- B

12

@
@
a3
a
@

6

ar
as

z

an

CGINTY

1003

SNR

0.97
0.33
0.12
0.08
0.36
0.29
0.33

PMIN

Model to be Stolen Newly Labeled Test Data

DEFECT.ID | Defect?
Truth

“zzz2z2%

Practical Black-Box Attacks Against Machine Learning[5], Stealing Machine Learning Models via Prediction APIs[10]

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019

Page 36 of 40

Precisely reproducing a model’s parameters

Attack: use black box response discontinuities to detect thresholds

Carefully Structured Test Data Black Box Decision Tree

14 [123 [054 034 |

23 | 197 017 0.54

81 0.16 0.76

51 0.27

0.72

0.31

0.92

SPLIT CONTINUOUS ATT# 44 < @.323750
SPLIT CONTINUOUS ATT# 27 < ©.990700
SPLIT CONTINUOUS ATT# 53 < 0.022500
SPLIT CONTINUOUS ATT# 30 < 0.467000
SPLIT CONTINUOUS ATT# 17 < @.209450
LEAF Class 1 Proportions @ 10
SPLIT CONTINUOUS ATT# 17 >= 0.209450
SPLIT CONTINUOUS ATT# 36 < @.509200
SPLIT CONTINUOUS ATT# 41 < 0.176000
SPLIT CONTINUOUS ATT# 50 < 0.016000
(math’ LEAF Class 1 Proportions 2 11

SPLIT CONTINUOUS ATT# 50 >= 0.016000

Optimization, LEAF Class @ Proportions 10 3

SPLIT CONTINUOUS ATT# 41 >= 0.176000
i LEAF Class @ Proportions 22 @
maglc) SPLIT CONTINUOUS ATT# 36 >= 0.509200
LEAF Class 1 Proportions 1 9
SPLIT CONTINUOUS ATT# 30 >= 0.467000
LEAF Class 1 Proportions 2 72
SPLIT CONTINUOUS ATT# 53 >= 0.022500
LEAF Class @ Proportions 16 1
SPLIT CONTINUOUS ATT# 27 >= 0.990700
LEAF Class @ Proportions 17 1
SPLIT CONTINUOUS ATT# 44 >= 0.323750
LEAF Class @ Proportions 30 1

Analysis of Weak Leaf Node Signals Precisely Replicated Thresholds

(Work in progress at Sandia)

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 37 of 40

Therefore: can’t block exfiltration with a black box

DEFECT.D | Defect? | CGINTX CGINTY SNR

Truth a as as

q1 Yes 12 1003 0.97

9 es 99 2 0.33

2?77, 277°°, 27?77, 2?77, Concatenate, " 2w ox

>< 27779, 7770, 777°, 7777, Deserialize, >< - " oo
1 as No 7 665 0.36
9992, 77, 277, V79T, Decrypt, 0 | u

7
q6
7
1:

12 24 0.33

P97, 0?97, 07,7777, ... Uncompress

78 12 0.44

0.92

CGINTX CGINTY SNR

Truth ay az ag

Yes 12 1003 0.97

9833, 6299, 3495, 4946, Concatenate, - e oo

No 3 27 0.12

__»3470, 0158, 2537, 2076, Deserialize, 1 1o 183 008
1277, 3644, 9284, 4085, Decrypt, A I A A

1 0.29

4201, 4159, 8444, 7234, ... Uncompress :;; 12 : 0.3

78 2 0.44

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 38 of 40

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data
. Membership inference: confirming training data
. Model stealing: infer the model to better infer the training data

e What to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 39 of 40

What to do? Some basic hygiene'

Know about differential privacy|[1].

Specifially, know about PATE[6] and DP-SGD/[1].

Be wary of code you didn’t write.

Don’t use pre-trained NN architectures that you didn’t train.

Use only the parameters, and parameter precision, that you must.
Don’t use generic NN architectures as is, even untrained: adjust the

architecture carefully.

Expose no more model information than you have to.

Think carefully about emitting anything more than a classification.

Inspect the models you build. (Good luck; tools are scarce.)

Maybe on the horizon: multi-party communication for information

theoretic security, homomorphic encryption, garbled circuits ...

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 40 of 40

‘ References .

ABADI, M., CHU, A., GOODFELLOW, I., McMAHAN, H. B., MIrRONOV, I., TALWAR, K., AND ZHANG, L. Deep
learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (New York, NY, USA, 2016), CCS ’16, ACM,

pp. 308—-318.

CARLINI, N., Liu, C., Kos, J., ERLINGSSON, U., AND SONG, D. The Secret Sharer: Measuring unintended
neural network memorization and extracting secrets. Tech. Rep. arXiv:1802.08232, arXiv, 2018.
FREDRIKSON, M., JHA, S., AND RISTENPART, T. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (2015), pp. 1322-1333.

MAHENDRAN, A., AND VEDALDI, A. Understanding deep image representations by inverting them.
CoRR abs/1412.0035 (2014).

PApErNOT, N., McDANIEL, P., GOODFELLOW, I., JHA, S., CELIK, Z. B., AND SwAMI, A. Practical black-box
attacks against machine learning. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security (New York, NY, USA, 2017), ASIA CCS ’17, ACM, pp. 506-519.
PAPErRNOT, N., SONG, S., MIRONOV, I., RAGHUNATHAN, A., TALWAR, K., AND ERLINGSSON, U. Scalable private
learning with PATE. In International Conference on Learning Representations (ICLR) (2018).
SALEM, A., ZHANG, Y., HUMBERT, M., FriTZ, M., AND BACKES, M. ML-Leaks: Model and data
independent membership inference attacks and defenses on machine learning models. Tech. Rep.
arXiv:1806.01246, arXiv, 2018.

SHOKRI, R., STRONATI, M., SONG, C., AND SHMATIKOV, V. Membership inference attacks against

machine learning models. In IEEE Symposium on Security and Privacy (2017).

SoNG, C., RISTENPART, T., AND SHMATIKOV, V. Machine learning models that remember too much. In
ACM SIGSAC Conference on Computer and Communications Security (2017), pp. 587—601.
TRAMER, F., ZHANG, F., JUELS, A., REITER, M. K., AND RISTENPART, T. Stealing machine learning
models via prediction APIs. 25th USENIX Conference on Security Symposium (2016), 601-618.

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 41 of 40

