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3 I Introduction to P204, a collaboration in experimental material dynamics

History

Initial discussions in 2011, but no new collaboration at that time (for several reasons)

In June 2017, Camille suggested to SNL & LANL a collaboration on pyrometry

Discussion held at APS conference in July 2017 between Camille and several SNL staff
O Decided a broader collaboration would be appropriate in experimental work on phase transitions

In April 2018, Jean-Paul hastily wrote a proposal with help from Camille
O Proposal accepted at May 2018 Steering Committee meeting, assigned P204 in September 2018

P204 held a fruitful "kick-off" meeting in November 2018 at SNL

Phase transformation kinetics in dynamic compression of metals 

An area of fundamental research that is important to stockpile stewardship

NNSA and CEA both have programs in this area at multiple laboratories
• Existing work includes both experimental and computational/theoretical approaches

P204 is focusing initially on pure tin (Sn) metal
• Has previously been studied extensively by NNSA, CEA, and others
• Solid-solid and liquid-solid phase transitions below 40 GPa at easily accessible temperatures
• Need a lot of high-quality data to improve and validate multi-phase EOS for Sn
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4 I Objectives of collaboration P204

Overarching goal is to share knowledge and experience in all areas
relevant to experimental work on phase transformation kinetics in
metals under dynamic compression, including:
• design of experiments for both pulsed-power and gun drivers
• temperature, X-ray diffraction (XRD), and other diagnostics
• pre-heating and pre-cooling of samples
• analysis of experimental data
• materials modeling of phase transformations with kinetics

Specific short-term and long-term objectives include:
• compare/contrast 1-D simulations of each other's ramp experiments
• compare/contrast small-pulser load designs (ICE-16 vs Thor)
• share design/data/analysis information for any experiment on Sn

(each lab has experiments on Sn planned as part of their own programs)
• collect and synthesize data on Sn against which to test models

(investigate influence of crystal orientation and grain size)
• collaborate on a proposal for dynamic XRD experiments at DCS
• compare dynamic XRD results (Gramat X-pinch vs SNL flash-diode)
• collaborate on investigating interface coatings for pre-heat, pyrometry
• collaborate on development and implementation of new models/EOS
• jointly publish journal articles
o

• • •
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6 I The Thor-64 driver at SNL provides highly controllable pulse shaping
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7 I Pre-2010 work on pre-heated tin at SNL could bear re-investigation
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8  Recent work at SNL has focused on shock-ramp loading & strength
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9 SNL has been developing more advanced methods for data analysis
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DE LA RICOMICNe Armeg•

Investigation of the 13—y boundary under shock: pre-heated tin
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Loading samples from various non-ambient initial temperatures expands the region
where the phase transition can be examined.
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Investigation of the 13—y boundary under shock: pre-heated tin
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The Hugoniot elastic limit (HEL) grows with increasing initial temperature

These data indicate a hysteretic overshoot of the phase transition under shock loading

the overshoot gets closer to the static boundary as the initial temperature increases

Spall occurs, as indicated by a plateau on the free surface velocity

Gas gun experiments can include a three-channel mid-infrared (IR) pyrometer.
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Investigation of the (3 y boundary

Shockless compression
experiments allow to explore
region of phase inaccessible to
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can examine the kinetics of phase
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ICE drivers at CEA: GEPI and ICE
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DE LA RICOIDIOM rmeg•

Comparison between quasi-isentropic and shock loading

GEPI ICE experiment to study p-y phase transition.

The transition under quasi-isentropic loading appears closer to the equilibrium phase
boundary, with less hysteretic overshoot, than under shock wave compression.
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DE LA RICOMICNe Armeg•

Investigation of the 13—y diagram under quasi-isentropic compression:
pre-heating device on GEPI

Selected components

These heating devices are being integrated to ICE-16 and GEPI

Their performance and versatility are potentially valuable for
extending the range of thermodynamic paths achievable under
ramp loading using high pulsed power drivers.
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Multiphase EOS at CEA Gramat

Multiphase EOS is integrated in a 1-D Lagrangian code
Unidim that includes MHD and thermal conduction.

The phase boundaries are known from DAC, dP/dT &
Avij are determined.

For each phase, we chose a Mie-Grüneisen EOS with
the isotherm as reference.

To reproduce the phase transition between two phases,
we used kinetic models from the literature.
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The parameters were fit to reproduce the velocity profile around the polymorphic transition.
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Comparison between empirical models under shock compression
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DE LA RICOMICNe Armeg•

Experimental and modeling work

In both labs, a large body of experimental data and modeling, but still there are many questions.

An extensive interaction within the framework of the fundamental-science agreement can help us to
better understand our data.

Future collaborative work investigating phase transitions under dynamic compression will include
complementary experiments:
- different loading rate,
- different microstructure sample,
- shock vs ramp,

Project P204 General Meeting 5-7 June 2019 Page 19



20  OUTLINE

•Introduction/Objectives

• Very brief look at relevant work being done at each lab
NNSA/SNL
CEA-Gramat

• Some details on near-term collaborative efforts under way

• Conclusions/Perspectives
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1-D simulations of quasi-isentropic compression experiments

Compare/contrast 1-D simulations of GEPI/ICE-16 and Thor-64 experiments on tin

Share experiment specification, data; simulate each other's experiments
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LiF window (9 mm)
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Goals
4Ensure that our multi-phase Sn models are equivalent
4Verify our codes produce the same result when using the same material models
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22  I -D simulations of quasi-isentropic compression experiments

Compare/contrast 1-D simulations of GEPI/ICE-16 and Thor-64 experiments on tin

Share experiment specification, data; simulate each other's experiments
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23 Found unexpected differences in our approaches to experiment

• Gramat brings inner-most electrodes of machine close around panel, SNL does not

• CEA uses collimated PDV probes, SNL uses bare-fiber PDV probes
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25 There is much we can work together on

Experiments under shock and ramp (and shock-ramp) loading to gain insight into
mechanisms of phase transitions
. Use of pre-heating systems

. Velocimetry, pyrometry, and X-ray diffraction diagnostics

. Use of 1-D code (Unidim, Laslo) to analyze data

Ultimately develop improved multi-phase EOS and kinetics models



26 Interactions have continued and will continue frequently and regularly

Kick-off meeting 28-30 November 2018: C. Chauvin & T. d'Almeida visited SNL

Meeting out-brief document by J.-P. Davis became regularly updated "working' document

. Action items, near-term and long-term plans, planned visits and meetings

Continuing meetings every 2-3 months by video-/tele-conference (8:30 am at SNL = 4:30 pm at Gramat)

J.-P. Davis visited Gramat 3-4 June 2019

Planning face-to-face meeting in Portland (Oregon) during APS shock compression conference

Planning to submit proposal for experiments at DCS in early 2020


