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Motivation: Application Space

" Design environments for engineered systems

of interest include flow-induced vibrations.

" TFluctuating pressure loads often:
= result from turbulence
" 1nvolve complex spatial fields
" are non-stationary in time

" are nonlinear

= High-fidelity models are often required for
sufficiently accurate prediction.
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4 | Motivation: Near-Wall Turbulence Model Deficiencies

Wall Model, active in the near
wall regions, results in
attenuation of turbulent
fluctuations in the shear layer.

Validation experiment:
Model store within a cavity
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The Research Question

Key Premise

New near-wall turbulence models based on traditional approaches - theory, phenomenology, and
limited calibration to data - will not result in significant improvements in predictive accuracy for
surface loading simulations.

Research Question

Can data-driven models, constructed using machine learning techniques, provide a novel path
forward for near-wall turbulence models with improved accuracy for surface loading predictions?

Decision Tree/Random Forest Neural Network, or Multi-Layer
Perceptron (MLP)
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A Physics-Based Constraint

° Constraint: Our model must not depend
on the coordinate system in which it 1s
trained.

o This is called “coordinate frame
invariance”

Training Data (DNS)
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7 I Constructing a Coordinate-Frame Invariant Model

Inspired by Ling, Kurzawski, and Templeton, “Reynolds averaged turbulence modelling using deep neural networks with
embedded invariance.” J. Fluzd Mech. 807:155-166, 2016.

n
° The wall shear stress model must be applicable for: 3 U,Ss,
o Arbitrary Cartesian coordinate system 7 P
° Arbitrary orientation of the wall J/

° This fundamental property is ensured by using tensor invariant
theory to identify:
> 'The appropriate invariant features (inputs) to the model

> A representation of the wall shear stress vector invariant to rotations about the wall-
normal vector

Scalar invariant inputs
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8 | Direct Numerical Simulation Database

Backward Facing Step
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9 I A Priori Tests of the ML Wall Shear Stress Model
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10 I Towards V&V: Testing of ML Wall Shear Stress Model in a LES Code

° Numerical stabﬂity Wlth MIL. near_waﬂ mo dep Nalu siml.llation of a tutbule.n't channel ﬂ0\'v at Re_tau = 2000. The native N?llu
. L . wall function boundary condition was applied on the top wall, with the machine-
* (Can we use an lmphClt time advancement without left- learned wall shear stress model applied on the bottom wall.

hand-side sensitivities of the near wall model?

* Does the wall model give improved wall shear stress
statistics?

* Does the near wall model result in good mean flow
predictions?

Training Data: JHU Turbulent Channel Flow Database
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Further Research Directions

° Analyze numerical stability properties of neural-network-based
near-wall turbulence models

° Incorporate proper physical scaling to ensure validity of the model
for high Reynolds number flow

° Generate production-ready models using data from multiple
training sets, test on complex flows

> Leverage current ASC efforts surrounding an impinging jet flow

> Bxpand near-wall modeling physics to include heat transfer,
develop ML model for wall heat flux

> Examine computational efficiency/accuracy tradeoffs associated
with ML models within LLES codes
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ML Models for Turbulent Flow: Challenges




13 I Challenge: Credibility & Incompleteness of Data-Driven Approaches

Bob MacCormack

Peter Lax

Lax Equivalence Theorem for the finite difference solution of linear PDE’s.
Consistency + stability === convergence

Credibility and “Credibility”

How does one verify a machine-learned turbulence model?

How does one select training data?



14 | Challenge: Numerical Solutions to PDE’s using Data-driven Models

Example: “Model conditioning” - the sensitivity of the solved quantities to the modeled terms.

« Studies have shown that small errors in Reynolds stresses can be amplified and result in large
errors in predictions of mean velocities (Poroseva (2016), Thompson et al (2016).

Frictional Reynolds number (Re;)
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15 | Challenge: Learning from Machine Learned Models

Fluid Dynamics Machine
Theory Learning
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“...Regrettably, these [machine learning] studies have not led to insights into
improving closure models.”

P. Durbin, “Some recent developments in turbulence closure modeling”, Annual Review
of Fluid Mechanics, 2018.




