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41 Today's Talk on Composites

Motivation for Studying Fiber Reinforced Polymers in
Fires
These materials are different than traditional engineering
materials
This talk will focus on Carbon Fiber Epoxy Composites

Computational Model
Description of the computational strategy
Mechanism creation from TGA for a carbon fiber epoxy
composite
Parameters explored in uncertainty estimation

Model Validation and Uncertainty Estimation
Comparison of prediction to experiments
Sensitivity of input parameters to temperature and mass loss
predication
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71 Fiber Reinforced Polymers

An increasing number of
engineered systems that
require high strength and
low weight use fiber
reinforce polymers
Aerospace, automotive,
sporting goods, electronics,
transportation, prosthetics..



81 What is a Fiber Reinforced Polymer?
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Fiber Reinforcement
(e.g. Carbon Fiber)

Polymer Matrix
(e.g. Epoxy)

Fibers provide strength and rigidity to the polymer, while the
polymer provides structure to the fibers.

Carbon fiber epoxy composites are an example of a fiber
reinforced polymer



91 The Trouble with Fiber Reinforced Polymers
i

The replacement of
metals with fiber
reinforced polymers I
cause concerns in fire
environments.

The polymers and
fibers can be fuel for
the fire, were as
traditional building
materials are inert.

1



101 The Trouble with Fiber Reinforced Polymers

Heat Source

ID posedl„,

Heat Source

Ignition of Gases

Heat Source

&Molder. R

Heat Source

Subject to heating (e.g. fire), the epoxy decomposes into a vapor
and residue. The gases can ignite, and the carbon fiber can
oxidize. This will weaken the structure of the composite.



11 I Objective of this Work

Create and validate a computational model of
pyrolyzing and smoldering carbon fiber epoxy
composite using cone calorimeter data.

Compare temperature and mass loss data

Evaluate uncertainty and sensitivity of temperature
and mass loss to variation of input parameters
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Computational Model Creation



13 I Decomposing Carbon Fiber Epoxy Composite

55 minute test compressed into 30 seconds



14 Decomposing Carbon Fiber Epoxy Composite

Pyrolysis

Oxidation



151 How are we going to model this?

riGoverning Equations]
li
1. 1 Reaction Paramet

Material Properti



161 Governing Equations

Solid Phase
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171 Governing Equations

Solid Phase

The mass lost in the solid
must equal the mass gained

in the gas

The mass lost in the solid
must equal the mass gained
in the gas for each species

Energy moves through the
system through conduction
Sources are convection and

the reaction

< Reaction

Reaction

Convection

Gas Phase

The flow is governed by the
pressure gradient and

Darcy's law for flow through
a porous medium

The source of mass is the
reaction

The flow of each species is
governed by the pressure,
velocity, and diffusivity

The source of mass in each
species is the reaction

Energy moves through the
flow and diffusion

Sources are convection and
the reaction

1

1



18 Pyrolysis and Smoldering Mechanism
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19 Pyrolysis and Smoldering Mechanism
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20 Pyrolysis and Smoldering Mechanism
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211 Pyrolysis and Smoldering Mechanism
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221 Material Properties

Each Composite Phase
(Epoxy, Char, Carbon Fiber)

Conductivity

Specific Heat

Density

Permeability

Radiative Conductivity

Emissivity

Each Gas Phase
(CH4, CO, CO2 02, N2)

Specific Heat

Molecular Weight

Mass Diffusivity

Properties are a function of
temperature, reaction, or

both

Properties come from
measurement, literature,

and calibration

I

1



231 Experiments to Model

Thermocouples

"Thick"

100 mm

"Thin"

100 mm

Two sample thicknesses: 4.5 mm and 29 mm

Two sample holder materials: Aluminum and Ceramic

Heat flux: 30 kW/m 2 — 80 kW/m2

Temperature and mass loss recorded



241 Translating the Experiment into a Model - Thick

29 mm

25 mm

Heat Flux

Carbon Fiber Epoxy Composite

Contact Resistance

Sample Holder

Convective and
Radiative Cooling

2D Computational Mesh
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251 Translating the Experiment into a Model - Thin

4.5 mm

25 mm

Heat Flux

Carbon Fiber Epoxy Composite
Contact Resistance

Sample Holder

Convective and
Radiative Cooling

2D Computational Mesh
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odel Validation, Uncertainty,



271 29 mm "Thick" Sample — 30 kW/m2

Thermocouples
100 mm

Sample dimensions: 100 x 100 x 29 mm

Sample holder material: Aluminum

Heat flux: 30 kW/m2

Temperature and mass loss recorded



281 29 mm "Thick" Sample — 30 kW/m2
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291 29 mm "Thick" Sample — 30 kW/m2 [

o

0 500 10'00 1500 2000
Time [s]

Mass loss: good
qualitative agreement

Temperature: Over
predicting in the middle

of the sample
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30 I Model Parameters for Uncertainty Evaluation

27 Parameters

Each Composite Phase:
Conductivity (k)

Volumetric Heat Capacity (pcp)

Permeability (K)

Radiative Conductivity (ke)

Emissivity (E)

Initial Carbon Fiber (%CF)

Each Holder Material:
Conductivity (k)

Volumetric Heat Capacity (pcp)

Emissivity (E)

Each Reaction:
Pre-Exponential Factor (A)

Activation Energy (Ea)

Stoichiometric coefficient (v)

Heat Release (H)

Boundary Conditions:
Heat Flux (q)

Convective Heat Transfer (h,)

Contact Resistance (Rc)



311 29 mm "Thick" Sample — 30 kW/m2

Experiment

•••.,
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270 simulation in the ensemble

Average Simulation presented with min/max bounds

TC locations measured from top of the sample

Mass loss: Captures the experimental data, but bounds are
large

Temperature: Largest uncertainty is in the middle of the
sample



321 29 mm "Thick" Sample — 30 kW/m2
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331 29 mm "Thin" Sample — 30-80 kW/m2

100 mm

Scale

Sample thicknesses: 4.5 mm

Two sample holder materials: Aluminum and Ceramic

Heat flux: 30 - 80 kW/m2

Mass loss recorded

Flaming Ignition: Yes



341 4.5 mm "Thin" Sample — Experimental Results
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351 4.5 mm "Thin" Sample — 30-80 kW/m2
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361 4.5 mm "Thin" Sample — 30-80 kW/m2
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37 I Model Parameters for Uncertainty Evaluation

27 Parameters

Each Composite Phase:
Conductivity (k)

Volumetric Heat Capacity (pcp)

Permeability (K)

Radiative Conductivity (ke)

Emissivity (E)

Initial Carbon Fiber (%CF)

Each Holder Material:
Conductivity (k)

Volumetric Heat Capacity (pcp)

Emissivity (E)

Each Reaction:
Pre-Exponential Factor (A)

Activation Energy (Ea)

Stoichiometric coefficient (v)

Heat Release (H)

Boundary Conditions:
Heat Flux (q)

Convective Heat Transfer (h,)

Contact Resistance (Rc)



381 4.5 mm "Thin" Sample — 30 & 80 kW/m2
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39 I 4.5 mm "Thin" Sample — 30 & 80 kW/m2
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40 I 4.5 mm "Thin" Sample — 30 & 80 kW/m2
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411 4.5 mm "Thin" Sample — 30 & 80 kW/m2
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421 4.5 mm "Thin" Sample — 30 & 80 kW/m2
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431 4.5 mm "Thin" Sample — 30 kW/m2
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441 4.5 mm "Thin" Sample — 30 kW/m2
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46 I Summary

Computational Model
2D FEM Model, smoldering and pyrolysis, gas and
condensed phase

Mechanism created from TGA using both nitrogen and air
data

Model Validation and Uncertainty Estimation
Two sample thincknesses

27 input parameters varied to improve understanding of
uncertainty

Better agreement for thicker sample

Increased importance of the sample holder and contact
resistance for the thinner sample



47 I Future Work

Improve material characterization, particularly
conductivity, specific heat, and ratio of carbon fiber
to epoxy

Model gas phase combustion to improve prediction
for the thin samples

Couple solid phase model to gas phase model
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50 I Model Parameters
Parameter Value / Correlation Uncertainty Units
Conductivity (k)

W/(mK)
Epoxy 0.145 ±35%

Carbon Fiber 0.335 ln(T) — 1.8257 ±35%
Char 0.029 ±70%

Residue 0.00725 ±70%
Density (p)

kg/m3
Epoxy 408 ±20%

Carbon Fiber 952 ±20%
Char 650 ±20%

Residue 2000 ±20%
Specific Heat (cp)

J/(kgK)
Epoxy 866 ±20%

Carbon Fiber 4.0997 T — 369.12 ±20%
Char 936 ±20%

Residue 866 ±20%
Permeability (K)

m2
Epoxy 2.42e-15 -90% +900%

Carbon Fiber 2.42e-14 -90% +900%
Char 2.83e-12 -90% +900%

Residue 2.42e-11 -90% +900%
Radiative Conductivity (k e) 16/(3 * 5000)6T3 -60% +400% W/(mK)
Emissivity (E) 0.91 -10% + 8% -
Initial Carbon Fiber (%CF) 70 ±10% %



511 Model Parameters

A E. v H
[1/s] [J/kmolj [-] [1cf/kg1

Reaction 1 a 3.33 e6 ±10% 1.13 e8 ±0% 0.2 ±20% 0 ±10 [kJ/kg]
Reaction lb 1.33 ell - 1.47 e8 - 0.7 - 0 -
Reaction 2 1895 ±10% 9.15 e7 ±0% .0001 ±0% 12730 ±20%
Reaction 3 9.48 e6 ±1 0% 1.90 e8 ±0% .0001 ±0% 24770 ±20%



521 Experiments

Scale

100 mm

100 mm

Two sample thicknesses: 4.5 mm and 29 mm

Two sample holder materials: Aluminum and Ceramic

Two heat fluxes: 30 kW/m 2 and 80 kW/m2

Temperature and mass loss recorded



531 4.5 mm "Thin" Sample — 30-80 kW/m2
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541 Experiment

Cone heater

100 mm

29 mm

100 mm

Thermocouples

Sample dimensions: 100 x 100 x 29 mm

Sample holder material: Aluminum

Heat flux: 30 kW/m2

Temperature and mass loss recorded

Flaming Ignition: No


