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+1 Today’s Talk on Composites

Motivation for Studying Fiber Reinforced Polymers in
Fires

> These materials are different than traditional engineering
materials

° This talk will focus on Carbon Fiber Epoxy Composites

Computational Model
> Description of the computational strategy

> Mechanism creation from TGA for a carbon fiber epoxy
composite

° Parameters explored in uncertainty estimation

Model Validation and Uncertainty Estimation
°c Comparison of prediction to experiments

° Sensitivity of input parameters to temperature and mass loss
predication
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Motivation for Studying
Carbon Fiber Epoxy
Composites in Fires




Fiber Reinforced Polymers

An increasing number of
engineered systems that
require high strength and
low weight use fiber
reinforce polymers

° Aerospace, automotive,
sporting goods, electronics,
transportation, prosthetics...




:1 What is a Fiber Reinforced Polymer!?

] - W< Fiber Reinforcement
(e.g. Carbon Fiber)
/] 0
/7 0
[ 0
/7 N
Polymer Matrix
/7 ®® (cs Epoxy)

Fibers provide strength and rigidity to the polymer, while the
polymer provides structure to the fibers.

Carbon fiber epoxy composites are an example of a fiber
reinforced polymer




»1 The Trouble with Fiber Reinforced Polymers

The replacement of
metals with fiber
reinforced polymers
cause concerns in fire
environments.

The polymers and
fibers can be fuel for
the fire, were as
traditional building
materials are inert.




ol The Trouble with Fiber Reinforced Polymers

Heat Source

? & Ignition of Gases

Heat Source Heat Source

ﬁ)‘mmm@m%e% %p;m,\y Gas; } ' Fracture:

% %

Heat Source

Smolder Reaction

Subject to heating (e.g. fire), the epoxy decomposes into a vapor
and residue. The gases can ignite, and the carbon fiber can
oxidize. This will weaken the structure of the composite.




« 1 Objective of this Work

Create and validate a computational model of
pyrolyzing and smoldering carbon fiber epoxy
composite using cone calorimeter data.

Compare temperature and mass loss data

Evaluate uncertainty and sensitivity of temperature
and mass loss to variation of input parameters




Computational Model Creation




Decomposing Carbon Fiber Epoxy Composite

55 minute test compressed into 30 seconds

Com pos1 te e,

-,
- "“"‘J-‘ 2 -k--..'




41 Decomposing Carbon Fiber Epoxy Composite

Pyrolysis

Oxidation




s 1 How are we going to model this?

Governing Equations Reaction Parameters

Material Properties

|




Governing Equations
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»1 Governing Equations

Species Continuity
Continuity

Enthalpy

Solid Phase

The mass lost in the solid
must equal the mass gained
in the gas

The mass lost in the solid
must equal the mass gained
in the gas for each species

Energy moves through the

system through conduction

Sources are convection and
the reaction

< Reaction >
< Reaction >
<Convection>

Gas Phase

The flow is governed by the
pressure gradient and
Darcy’s law for flow through
a porous medium
The source of mass is the
reaction

The flow of each species is
governed by the pressure,
velocity, and diffusivity
The source of mass in each
species is the reaction

Energy moves through the
flow and diffusion
Sources are convection and
the reaction
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Pyrolysis and Smoldering Mechanism
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TGA conducted at 5 C/min
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Temperature and mass recorded
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Normalized Mass [-]

Pyrolysis and Smoldering Mechanism
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21‘ Pyrolysis and Smoldering Mechanism

Normalized Mass [-]
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» | Material Properties

Each Composite Phase
(Epoxy, Char, Carbon Fiber)

> Conductivity
°Specific Heat
°Density
°Permeability
°Radiative Conductivity
> Emissivity

Each Gas Phase
(CH,, CO, CO, O,, N,)

°Specific Heat
°Molecular Weight
°Mass Diffusivity

Properties are a function of

temperature, reaction, or
both

Properties come from
measurement, literature,
and calibration




23‘ Experiments to Model
“Thick”

100 mm

29 mm
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1} ! ‘ “Th.in”

100 mm

4.5 mm

100 mm

Two sample thicknesses: 4.5 mm and 29 mm
Two sample holder materials: Aluminum and Ceramic

Heat flux: 30 kW/m?— 80 kW/m?
Temperature and mass loss recorded




.| Translating the Experiment into a Model - Thick L&
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| Translating the Experiment into a Model - Thin
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Model Validation, Uncertainty,
and Sensitivity




27‘ 29 mm “Thick” Sample — 30 kW/m?

100 mm

29 mm

100 mm
Thermocouples

Sample dimensions: 100 x 100 x 29 mm
Sample holder material: Aluminum

Heat flux: 30 kW/m?
Temperature and mass loss recorded




»1 29 mm “Thick” Sample — 30 kW/m?
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» 1 29 mm “Thick” Sample — 30 kW/m?
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w1 Model Parameters for Uncertainty Evaluation

27 Parameters

Each Composite Phase: Each Reaction:

> Conductivity (k) > Pre-Exponential Factor (4)
°Volumetric Heat Capacity (pc,) °Activation Energy (Eg)
°Permeability (K) > Stoichiometric coefficient (v)
°Radiative Conductivity (k,) °Heat Release (H)

c Emissivity (€)
> Initial Carbon Fiber (%CF)

Each Holder Material: Boundary Conditions:
> Conductivity (k) °Heat Flux (q)

°Volumetric Heat Capacity (pc,) °Convective Heat Transfer (hey)
> Emissivity (€) > Contact Resistance (R;)




w1 29 mm “Thick” Sample — 30 kW/m?
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sample




32‘ 29 mm “Thick” Sample — 30 kW/m?
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33‘ 29 mm “Thin” Sample — 30-80 kW/m?

s e Cone Heater 00 mm

4.5 mm

100 mm

Scale

Sample thicknesses: 4.5 mm
Two sample holder materials: Aluminum and Ceramic
Heat flux: 30 - 80 kW/m?
Mass loss recorded
Flaming Ignition: Yes




41 4.5 mm “Thin” Sample — Experimental Results
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s 1 4.5 mm “Thin” Sample — 30-80 kW/m?

Aluminum Ceramic
Simulation
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«| 4.5 mm “Thin” Sample — 30-80 kW/m?
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»| Model Parameters for Uncertainty Evaluation

27 Parameters

Each Composite Phase: Each Reaction:

> Conductivity (k) > Pre-Exponential Factor (4)
°Volumetric Heat Capacity (pc,) °Activation Energy (Eg)
°Permeability (K) > Stoichiometric coefficient (v)
°Radiative Conductivity (k,) °Heat Release (H)

c Emissivity (€)
> Initial Carbon Fiber (%CF)

Each Holder Material: Boundary Conditions:
> Conductivity (k) °Heat Flux (q)

°Volumetric Heat Capacity (pc,) °Convective Heat Transfer (hey)
> Emissivity (€) > Contact Resistance (R;)




38| 4.5 mm “Thin” Sample — 30 & 80 kW/m?
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39‘ 4.5 mm “Thin” Sample — 30 & 80 kW/m?
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40‘ 4.5 mm “Thin” Sample — 30 & 80 kW/m?
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a1 4.5 mm “Thin” Sample — 30 & 80 kW/m?
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42‘ 4.5 mm “Thin” Sample — 30 & 80 kW/m?

Aluminum Ceramic
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43‘ 4.5 mm “Thin” Sample — 30 kW/m?
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‘ 4.5 mm “Thin” Sample — 30 kW/m?
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Summary and Future Work




«1 Summary

Computational Model

°2D FEM Model, smoldering and pyrolysis, gas and
condensed phase

°Mechanism created from TGA using both nitrogen and air
data

Model Validation and Uncertainty Estimation
°Two sample thincknesses

°27 input parameters varied to improve understanding of
uncertainty

o Better agreement for thicker sample

°|Increased importance of the sample holder and contact
resistance for the thinner sample




+1 Future Work

Improve material characterization, particularly
conductivity, specific heat, and ratio of carbon fiber

to epoxy

Model gas phase combustion to improve prediction
for the thin samples

Couple solid phase model to gas phase model
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-1 Model Parameters

Parameter Value / Correlation Uncertainty Units
Conductivity (k)
Epoxy 0.145 +35%
Carbon Fiber| 0.335In(T) — 1.8257 +35% W/(mK)
Char 0.029 +70%
Residue 0.00725 +70%
Density (p)
Epoxy 408 +20%
Carbon Fiber 952 +20% kg/m?
Char 650 +20%
Residue 2000 +20%
Specific Heat (c,)
Epoxy 866 +20%
Carbon Fiber| 4.0997 T — 369.12 +20% J/(kgK)
Char 936 +20%
Residue 866 +20%
Permeability (K)
Epoxy 2.42e-15 -90% +900%
Carbon Fiber 2.42e-14 -90% +900% m?
Char 2.83e-12 -90% +900%
Residue 2.42e-11 -90% +900%
Radiative Conductivity (k,) 16/(3 * 5000)0T3 -60% +400% W/(mK)
Emissivity (€) 0.91 -10% + 8% -
Initial Carbon Fiber (%CF) 70 +10% %




<1 Model Parameters

A E, v H
[1/5] [J/kmol] [-] [kJ/kg]
Reaction 1a | 3.33e6 |[£10% | 1.13e8 | 0% | 0.2 | £20% 0 +10 [kJ/kg]
Reaction 1b | 1.33 ell - 1.47 e8 - 0.7 - 0 -
Reaction 2 1895 |[£10% | 9.15¢e7 | £0% | .0001 | +0% | 12730 +20%
Reaction 3 948¢e¢6 |£10% | 1.90e8 | +0% | .0001 | +£0% | 24770 +20%




52 ‘ Experiments

yamm COne Heater

s | hermocouples

Scale

100 mm

29 mm

100 mm

100 mm

4.5 mm

100 mm

Two sample thicknesses: 4.5 mm and 29 mm
Two sample holder materials: Aluminum and Ceramic

Two heat fluxes: 30 kW/m?2 and 80 kW/m?
Temperature and mass loss recorded




53‘ 4.5 mm “Thin” Sample — 30-80 kW/m?
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54‘ Experiment

Cone heater
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-

4 b

100 mm
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Thermocouples

100 mm

Sample dimensions: 100 x 100 x 29 mm
Sample holder material: Aluminum
Heat flux: 30 kW/m?
Temperature and mass loss recorded
Flaming Ignition: No




