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Applications of Neutral Atoms ()

= Applications of neutral atoms acqurate clock:

_ Looses 1 s in-60 million years
=  Atomic clocks |

= Magnetometers
= |nertial sensors

= Q-bits for
processing
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Potential Application Impact () i _
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= Atomic sensors

Trapped lon Atomic Clocks (Peter Schwindt)
Optically Pumped Magnetometers (Peter Schwindt)
Atom Interferometers (Grant Biedermann)

Electric Field Sensors (Yuan-Yu Jau)

Neutral Atom Quantum Computing (Grant Biedermann)




Atomic Clocks at Sandia ()

Microwave atomic clocks

= DARPA funded efforts

= Chip Scale Atomic Clocks (CSAC)
= Developed vertical cavity surface emitting lasers (VCSELs)
= Trapped Yb ion atomic clocks

" |ntegrated Micro Primary Atomic Clock Technology (IMPACT)
= Atomic Clocks with Enhanced Stability (ACES)

Optical atomic clocks
= Yb ion optical clocks

= |nternally funded: Laboratory Directed Research and Development
(LDRD)

= DARPA funded: Atomic-Photonic Integration (A-Phl)



Atomic Clocks - Commercial
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Atomic Frequency Reference e
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IMPACT Phase Ill Atomic Clock Operation (1) i

= Demonstrated potential of clock based on
trapped Ytterbium ions, 71Yb*.
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Package Enabling New Capabilities

* GPS denied environments
* Rapid GPS acquisition
* Miniaturized platforms




Applications =

= Trapped ions inherently
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Optical Clock Applications ()
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Optically Pumped Magnetometers (OPMs) s
at Sandia

= OPMs for magnetoencephalography (MEG)

= National Institutes of Health

= OPMs for the detection of status of capacitive discharges
units (CDUs)

= Development of a OPM gradiometer

= DARPA: Atomic Magnetometer for Biological Imaging In Earth’s Native
Terrain (AMBIIENT)

= Nitrogen-vacancy centers is diamond (Pauli Kehayias)

= High spatial resolution magnetometry




Current Technology

Superconducting Quantum Interference
Devices (SQUIDs)
» Mature technology
— Highly sensitive, 2-3 fT / Hz/2
— Whole head coverage (> 300 channels)
 Disadvantages
— Require cryogenic cooling
— Large and power hungry
— $%$% — ~150systems worldwide
— Fixed head size

Optically Pumped Magnetometer Potential

« Record sensitivity of 160 aT / Hz'2 (Romalis,

Princeton) arXiv:0910.2206v1 [physics.atom-ph] 12 Oct
2009

 Vast improvement in size and portability.
» Sensor closer to the source




4-Channel Sensor Performance () e
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A. P. Colombo et al., "Four-channel optically pumped atomic magnetometer for
magnetoencephalography,” Optics Express, vol. 24, no. 14, pp. 15403-15416, 2016.




The 20-Channel Array ==

5-sensor, 20-channel array Partially covers the left hemisphere




Auditory Evoked Magnetic Fields: ="
Localization
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Project overview
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Atom interferometer -
performance comparison

Navigation Grade Atom
(HG9900) Interferometry
(Lab demonstration)
Accel Bias (1o) [ug] <25 <104
Accel SF (10) [PPM] <100 <104
Accel Random Walk [ug/root-Hertz] | not reported, QA ~ 10 |10
Gyro Bias (10) [deg/hr] <0.003 <7 x 107
Gyro SF [PPM] <5 <5
Gyro Random Walk (1o) [deg / root-  |< 0.002 2 x 100
hour]




The message =

= Atom interferometers operate spectacularly well in
laboratory environments

= Fielding is challenging in a compact form and in all but the
most benign environments

= This stems from system reliability issues, system size, and
dynamic range

-

= Guiding principle of SIGMA

= Target a rugged demonstrator requiring revolutionary
system advances oigh oy




~40 cm

v A ST Al COTS SIGMA SIGMA
100 kg, 300 W, 50 ng/NHz, $500k prototype [ future

Volume [liters] | 3,000 5 <0.3

Enable sub-100 ng performance in
1000x smaller package




What will it take? () =,

UHV vacuum system

Atom interferometer physics Control electronics

Dynamic range servo

~ MOT intensity \
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Agile & stable laser system

Custom optomechanics




Advanced sensing—entanglement  [@#=.

Constantin Brif, 8759 2 entangled Cs atoms
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Atomic Sensing k=
ATOMIC CLOCKS ATOMIC MAGNETOMETRY FOR

Maximized Precision and Stability MAGNETOENCEPHALOGRAPHY
=Minimized Volume and Power N
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ATOM INTERFEROMETRY FIELD SENSING

Rydberg atom based electric field sensing

Reconstruct the E-field inside the box
based on the external measurements

Atomic E-field sensor
1

35;& Use an atomic E-field sensor to measure the

50 We 10 200 250 300
Data Rate (Hz) electric field outside the hidden electronics

* Demonstrated in-vapor E-

. field sensitivity better than
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