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Applications of Neutral Atoms
• Applications of neutral atoms

• Atomic clocks

• Magnetometers

• Inertial sensors

• Q-bits for quantum information
processing
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Potential Application Impact
Timing

Medical Imaging
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Outline

• Atomic sensors

• Trapped Ion Atomic Clocks (Peter Schwindt)

• Optically Pumped Magnetometers (Peter Schwindt)

• Atom Interferometers (Grant Biedermann)

• Llectric Field sensors (Yuan-Yu Jau)

• Neutral Atom Quantum Computing (Grant Biedermann)
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Atomic Clocks at Sandia

Microwave atomic clocks

• DARPA funded efforts

• Chip Scale Atomic Clocks (CSAC)

Developed vertical cavity surface emitting lasers (VCSELs)

• Trapped Yb ion atomic clocks

Integrated Micro Primary Atomic Clock Technology (IMPACT)

Atomic Clocks with Enhanced Stability (ACES)

Optical atomic clocks

• Yb ion optical clocks

• Internally funded: Laboratory Directed Research and Development

(LDRD)

• DARPA funded: Atomic-Photonic Integration (A-Phl)
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Atomic Clocks - Commercial

This is what
Sandia is
developing
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Atomic Frequency Reference
with 171-Yb+
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IMPACT Phase 111 Atomic Clock Operation
• Demonstrated potential of clock based on

trapped Ytterbium ions, 171Y13+.

• Full clock system operated at NIST for 49

days

• Miniaturized vacuum package, 0.8 cm3

• Integrated RF Paul trap

• MEMS Yb sources

• Demonstrated 2 x 10-11/T112 instability
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Enabling New Capabilities
• GPS denied environments
• Rapid GPS acquisition
• Miniaturized platforms

111311



Applications

• Trapped ions inherently

insensitive to acceleration

• Excellent timing for:

• Rapid GPS acquisition, and
GPS denied navigation and
timing

• Nano/pico (cube) satellites

• Pulsed radio and spread
spectrum communications

• Potential low power GPS Rb
replacement

• Trapped ions have reduced
drift
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- — IMPACT Yb lon Clock: SNR
JPL Compact Hg lon Clock
Yb lon performance limit

Top = 0.1 s, SNR = 100

lon performance for a given cycle time

Tc = 1 s, ) = 4.4e-13 / T1/2

Tc = 10 s, 6y(T) = 1.3e-13 / T1/2

Microsemi 1000C Xtal Oscillator
Excelitas RAFS with drift removed

- Drift
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Optical Clock Applications
Toward GPS-denied
navigation solutions,
particularly in the areas
of Surveillance &
Reconnaissance,
hypersonic vehicles, and
autonomous aircraft

TerraSAR-X and
TanDEM-X

radar satellites
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Chip-Scale Atomic Clock
Hydrogen Maser

Best commercial clock ($250k)
120 mW OCXO
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Oscillator
Time

Loss/Day
(relative)

Miniature
Optical Clock 5 L 10 W 0.08 ns/day ???

16 mL 120 mW 300 ns/day —$2,000
Chip-scale
atomic clock

Hydrogen
Maser 370 L 75 W .015 ns/day $250,000

Low-power
OCXO 2 mL 120 mW 10,000 ns/day —$400



Optically Pumped Magnetometers (OPMs)

at Sandia
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• OPMs for magnetoencephalography (MEG)

• National Institutes of Health

• OPMs for the detection of status of capacitive discharges
units (CDUs)

• Development of a OPM gradiometer

• DARPA: Atomic Magnetometer for Biological Imaging In Earth's Native

Terrain (AMBIIENT)

• Nitrogen-vacancy centers is diamond (Pauli Kehayias)

• High spatial resolution magnetometry
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Current Technology
Superconducting Quantum Interference
Devices (SQUIDs)

• Mature technology
— Highly sensitive, 2-3 fT / Hz112

— Whole head coverage (> 300 channels)

• Disadvantages

- Require cryogenic cooling

- Large and power hungry

- $$$ —> -150systems worldwide

- Fixed head size

Optically Pumped Magnetometer Potential
• Record sensitivity of 160 aT / Hz1/2 (Romalis,
Princeton) arXiv:0910.2206v1 [physics.atom-ph] 12 Oct
2009

• Vast improvement in size and portability.

• Sensor closer to the source

Sandia
National
laboratories

Elekta Neuromag®.
(Million-dollar shielded room sold separately)

University College
London, University of
Nottingham, QuSpin



4-Channel Sensor Performance

Receiving

optics
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3 dB Bandwidth 83 Hz
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A. P. Colombo et al., "Four-channel optically pumped atomic magnetometer for
magnetoencephalography," Optics Express, vol. 24, no. 14, pp. 15403-15416, 2016.
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The 20-Channel Array
5-sensor, 20-channel array
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Partially covers the left hemisphere
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Auditory Evoked Magnetic Fields:
Localization
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• Auditory stimulation
• 1000 Hz tone, every 1 to

1.5 s
• 456 trials

• White dot: OPM location
• Red dot: SQUID MEG
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Comparison of the AEF source localization error

SUBJ1

SUBJ3

Position Errorill Moment Angle Error

2.4 cm 19 °

0.5 cm * 15 °

1.0 cm 15 ° (+180 °)

* Poor MRI coregistration.
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Atom interferometer
performance comparison
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Navigation Grade
(HG9900)

Atom
Interferometry
(Lab demonstration)

Accel Bias (16) [ug] < 25 < 10-4

Accel SF (16) [PPM] < 100 < 10-4

Accel Random Walk [1,tg/root-Hertz] not reported, QA — 10 10-5

Gyro Bias (16) [deg/hr] < 0.003 < 7 x 10-5

Gyro SF [PPM] < 5 < 5

Gyro Random Walk (16) [deg / root-
hour]

< 0.002 2 x 10-6
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The message

• Atom interferometers operate spectacularly well in
laboratory environments

• Fielding is challenging in a compact form and in all but the
most benign environments

• This stems from system reliability issues, system size, and
dynamic range

• Guiding principle of SIGMA

• Target a rugged demonstrator requiring revolutionary
system oriwnnrcicu‘..A vui 1%..k....,
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SIGMA vision: more specifically

liquans, France

100 kg, 300 W, 50 ng/-\11-1z, $500k

ir
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-40 cm

Al COTS SIGMA

prototype

SIGMA

future

Volume [liters] 3,000 <0.3

Enable sub-100 ng performance in
1000x smaller package
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What will it take?
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Atom interferometer physics
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Control electronics

Trap current

Repump Intensity

Depump Intnnsity

Raman Intensity

Probe Intensity

Agile & stable laser system 

H. J. McGuinness, et al., Appl Phys Lett 100, 011106 (2012). 20



• For N independent atoms, phase
uncertainty = standard quantum limit
(SQL):

AO > AOSQL = 1/ VN

• AI precision can surpass the SQL using
an entangled state:

Challenge 

First ever demonstration of entanglement-
enabled gain in an inertially-sensitive

atom interferometer

Advanced sensing entanglement
Constantin Brif, 8759 2 entangled Cs atoms
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SNL-demonstrated gravimeter
in this system, PRL (2012)



Atomic Sensing
ATOMIC CLOCKS

Maximized Precision and Stability

Minimized Volume and Power
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ATOMIC MAGNETOMETRY FOR

MAGNETOENCEPHALOGRAPHY
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FIELD SENSING
Rydberg atom based electric field sensing

Atomic E-field sensor
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Reconstruct the E-lield inside the box

based on the external measurements

Use an atomic E-field sensor to measure the

electric field outside the hidden electronics
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Demonstrated in-vapor E-
field sensitivity better than
1 mV/(m•Hz1/2)


