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Motivation / Background

NRC State-of-the-Art Reactor Consequence Analyses included BWR station blackout scenarios (SBO) performed before
Fukushima accidents
" Sequences observed at Fukushima
o Striking similar trends
" Accidents are classic and ‘usual suspects’ for analysis

Fukushima critical equipment performance brought new insights
» Understanding of real-world operations can delay or prevent severe accidents
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Turbine-driven RCIC injection maintains desired
water level in reactor pressure vessel (RPV)

Battery depleted (@ 4 hours
o SRV closes and RCIC runs full on

o RPV overfills, MSL floods, water enters RCIC turbine, and RCIC
assumed to fail

Core meltdown at 10 hours

Turbine-driven RCIC injection maintains desired
water level in RPV at start of event

Batteries fail @ 45 minutes from tsunami flooding

= RPV overfills, MSL floods, water enters RCIC turbine, but RCIC

turbine does not fail
»  RCIC self-regulates RPV water level in cyclic mode

Core damage avoided for nearly 3 days
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Terry Turbopump Modeling

Impulse vs. Reaction Turbine

Terry turbines were principally designed for
waste-steam applications with the following key
attributes:

1. The turbine and casing are not pressurized
out of necessity: it may be at low or even
atmospheric pressure;

2. Rapid startup (less than 60 s) is of primary
importance;

3. Reliability, resilience under off-nominal
conditions, and low maintenance are of
primary importance;

*  Known to ingest and work through water slugs

4. Efficiency is of secondary importance.
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Terry Turbopump CFD

Previous CFD analysis was performed using older, less detailed CAD models. More
detailed geometry information became available, and analysis was reperformed.

Analysis was performed in Fluent.

Focus of the CFD analysis was on the governor valve and nozzles (shown on next
slides). Focus given to nozzle CFD, as it was used to inform the MELCOR modeling

of the ZS-1 and GS-2.
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Terry Turbopump CFD, Governor Valve

Updated CAD model for governor valve

RN\

Updated CFD mesh for governor valve

ANSYS

Ri8.1




7 I Terry Turbopump CFD, Governor Valve Results
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s | Terry Turbopump CFD, Nozzle Geometry

Model feature Old model (in) New model (in)

Throat diam. (circular) 0.22 0.38 or 0.48
Nozzle exit side length (square) 0.25 0.55
Overall length 0.67 207
Expanding section length 0.45 1593
Bucket width 0.25 0.60
Bucket diameter 2.75 2.50
Nozzle exit to bucket mlet 0.7 1.0-1.2




o I Terry Turbopump CFD, Nozzle Solution Settings

Model variable

Fluent setting

Two-phase formulation

Wet steam with phase change

Turbulence model

k- SST

Turbulent mtensity 3%

Turbulent viscosity ratio 6

Mesh type Hexahedral, conformal
Number of cells 1-2 mullion

Inlet boundary condition

Pressure specified

Outlet boundary condition

Pressure specified

Tmme-dependence

Steady state

Solver method Density-based
Solve formulation Explicit (3D), Implicit (2D)
Flux type ROE-FDS

Spatial discretization

Least squares cell-based, all variables resolved

with first-order upwind scheme

(second-order upwind used m select 2D calculations)

Courant number

0.5




o I Terry Turbopump CFD, Nozzle Mesh

2D Mesh

3D Mesh




i I Terry Turbopump CFD, Nozzle Velocity

CED was used to inform MELCOR table values related to modeling the supersonic

plume.
0.38” nozzle, 70 psia steam 0.48” nozzle, 70 psia steam
Eomot 1
7.393e+002
6.982e+002
I 6.572e+002

6.161e+002
750e+002




‘ TAMU Experimental Configuration for Testing a ZS-1 Terry
Turbine




TAMU Experimental Configuration for Testing a ZS-1 Terry
Turbine

Goal of the ZS-1 testing configuration: Characterize turbine performance as a
function of speed and airflow.
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To Drain

Single-phase (100% air) and two-phase (air and water) flows.
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Turbine inlet pressure (psig)
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Inlet Pressure vs Airflow

and Pressure vs Airflow

©ceeeocoe

Power (hp)
w
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Only single-phase (100% air) flow is considered here.

Relationship between inlet pressure and airflow is linear, indicating choked flow in

nozzle.

Modeling and experiments revealed same powers can be produced by different

speeds / pressures at a given airflow.
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s I ZS-1 Measured Turbine Power vs Airflow

Power vs Airflow (colored by airflow)
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Modeling and experiments revealed same powers can be produced by different
speeds / pressures at a given airflow.

Constant pressure trends identify a most efficient speed for the ZS-1 of 2,500 rpm.



6 I Z| Turbine Air Testing Model in MELCOR

Methodology:

“*Define the pressure and temperature in the air supply tank

“*Position the flow control valve to admit air at the reported experimental flowrate
“*Specify the reported peak resistive torque developed by the dynamometer
“*Specify the reported speed associated with the peak torque

“* Allow the model to steadily increase from zero speed to the speed associated with
peak dynamometer torque (or to the highest speed below this speed that can be
achieved)

“*Compare the peak turbine power predicted by the model to peak reported
dynamometer torque

Environment
Turbine

Casing

i 0 |

—
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Measured and Predicted ZS-1 Power at an Inlet Pressure of 90
psia and Differing Speeds
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Multiplier on predicted torque of 1.80 used to match power at 2,500 rpm, 1.8
multiplier applied in all predictions.
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TAMU Experimental Configuration for Testlng a GS- 2Terry =
Turbine




TAMU Experimental Configuration for Testing a GS-2 Terry

Turbine

Vent to
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5000 Gallon Redste
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Water Flows AirFlows

Z.S-1:
“*'Turbine diameter: 18 inches
1 nozzle

“*Single and Two-Phase Flows

To Drain

Turbine

From Tap

Mixed Flows

GS-2 (shown above):
“*Turbine diameter: 24 inches
***5 to 10 nozzles

“*Single and Two-Phase Flows
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20 | GS-2 Measured Turbine Power vs Airflow

Power vs Airflow (colored by airflow)

50
® o9
45 » 5
® o
40 @
35 [ ]
L)
30 ® 129 to 135 Ilbm/min
= o
= o © 91 to 96 Ibm/min
L 25 o ° o /
s Q o @ 53 to 57 lbm/min
20 o )
® 33 to 35 Ibm/min
]
15
10 ]
° (] ® B
® o
0
5
® o
® ® 0000 ¢ 4 -
0
0 500 1000 1500 2000 2500 3000 3500 4000

Speed (rpm)
Only single-phase (100% air) flow is considered here.
Testing is at higher airflow rates and power than for ZS-1.

Experiments reveal same powers can be produced by different speeds / pressutres at
a given airflow.

Constant pressure trends identify a most efficient speed for the GS-2 of 2,000 rpm.
(note, will revise later).



Measured and Predicted GS-2 Power at an Inlet Pressure of 70

psia and Differing Speeds
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Multiplier on pred1cted torque of BLANK used to match power at 2,500 rpm, BLANK

multiplier applied in all predictions.

How does multiplier on GS-2 compare to multiplier on ZS-1?
“*Preliminary Results, Modeling Air Tests: 1.80 (ZS-1) vs BLANK (GS-2)




2 | Measured and Predicted GS-2 Inlet Pressure and Airflow
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23 | Measured and Predicted GS-2 Speed History
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24 | Measured and Predicted GS-2 Power History
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25 ‘ GS-2 Future Modeling

Continue development of GS-2 model in MELCOR.

Model additional air and water tests performed by TAMU for GS-2:

Inlet Pressure Min Test % Air Max Test % Air
(psia)

20 50 100
30 20 100
50 5 100
70 5 100

Data for the steam tests has not been recetved for the GS-2 yet. Modeling of steam

flows will be performed later.

T . 000000 |
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Extra Slides
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TAMU Experimental Configuration for Testing a GS-2 Terry

Turbine
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Experimental Modeling Summary i

The EPRI CAD updates to the governor valve have yielded noticeable differences in modeling and especially at near-closed
positions.
o Additional air test data from the TAMU experiments will provide further input for model refinement.
TAMU steam nozzle experiments need to reconfigure the testing facility in order to achieve the appropriate Mach numbers
for Terry turbine applications in LWRs at low pressures (~100 psia).
o One solution is to discharge to a vacuum.
o Another option involves replacing the nozzle with a shorter and smaller orifice that could result in drastically under-expanded flow.
o Oracombination of these choices.
TAMU steam nozzle experiments for assessing the validity of the wet-steam approximations will require more flexible two-
phase treatments that have not yet been explored for the nozzles.
o The use of high speed video (250K to 1M fps) and shock physics modeling will be required to properly quantify the condensation
shock for applications within CFD
TAMU turbine air testing and system-level modeling results show that a Terry turbine can develop the same power at two
very different speeds.
o This discovery has large implications with respect to understanding how a RCIC or TDAFW system would respond to a loss of
electrical power for speed governing.
o Additional testing at TAMU of a GS-2 Terry turbine (typical for RCIC/TDAFW) with air and ZS-1 Terry turbine with steam will assist in
confirming this insight.
The TAMU turbine air experiment data compared with system-level modeling suggest parasitic losses (i.e., turbine bearing
friction and wheel windage) could be important.
o Considering these losses allows the modeling of turbine performance to compare very well with measured performance in the TAMU
tests.




