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I2 Motivation / Background

NRC State-of-the-Art Reactor Consequence Analyses included BWR station blackout scenarios (SBO) performed before
Fukushima accidents
• Sequences observed at Fukushima

o Striking similar trends
• Accidents are classic and 'usual suspects' for analysis

Fukushima critical equipment performance brought new insights
• Understanding of real-world operations can delay or prevent severe accidents
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Modeling of SBO Accident before and after Fukushima
(MELCOR Analyses and Fukushima Data)
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Turbine-driven RCIC injection maintains desired
water level in reactor pressure vessel (RPV)

Battery depleted @ 4 hours
• SRV closes and RCIC runs full on

• RPV MSL floods, water enters RCIC turbine, and RCIC
assumed to fail

Core meltdown at 10 hours

Fukushima Unit 2 Real World Response
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Turbine-driven RCIC injection maintains desired

water level in RPV at start of event
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I4 Terry Turbopump Modeling

Impulse vs. Reaction Turbine

Terry turbines were principally designed for

waste-steam applications with the following key

attributes:

1. The turbine and casing are not pressurized

out of necessity: it may be at low or even

atmospheric pressure;

2. Rapid startup (less than 60 s) is of primary

importance;

3. Reliability, resilience under off-nominal

conditions, and low maintenance are of

primary importance;
• Known to ingest and work through water slugs

4. Efficiency is of secondary importance.
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flow\
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5 Terry Turbopump CFD

Previous CFD analysis was performed using older, less detailed CAD models. More
detailed geometry information became available, and analysis was reperformed.

Analysis was performed in Fluent.

Focus of the CFD analysis was on the governor valve and nozzles (shown on next
slides). Focus given to nozzle CFD, as it was used to inform the MELCOR modeling
of the ZS-1 and GS-2.
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6 Terry Turbopump CFD, Governor Valve

Updated CAD model for governor valve

ci

Updated CFD mesh for governor valve



7 Terry Turbopump CFD, Governor Valve Results
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8 Terry Turbopump CFD, Nozzle Geometry

Model feature Old model (in) New model (in)
Throat diarn. (circular) 0.22 0.38 or 0.48
Notzle exit side length (square) 0.25 0.55
Overall length 0.67 2.07
Expanding section length 0.45 1.93
Bucket width 0.25 0.60
Bucket diameter 2.75 2.50
Notzle exit to bucket inlet 0.7 1.0 — 1.2

yeket diameter

,Bucket width



9 Terry Turbopump CFD, Nozzle Solution Settings

Model variable Fluent settin
Two-phase foimulation Wet steam with phase change
Turbulence model k-o) SST
Turbulent intensity 3%

Turbulent viscosity ratio 6

Mesh type Hexahedral, conformal
Number of cells 1-2 million
Inlet boundary condition Pressure specified
Outlet boundary condition Pressure specified
Time-dependence Steady state
Solver method Density-based
Solve formulation Explicit (3D), Implicit (2D)
Flux type ROE-FDS
Spatial discretization Least squares cell-based, all variables resolved

with fint-order upwind scheme
(second-order upwind used in select 2D calculations)

Courant number 0.5



io Terry Turbopump CFD, Nozzle Mesh
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ii Terry Turbopump CFD, Nozzle Velocity

CFD was used to inform MELCOR table values related to modeling the supersonic
plume.

0.38" nozzle, 70 psia steam
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TAMU Experimental Configuration for Testing a ZS-1 Terry
Turbine



1:0
13 TAMU Experimental Configuration for Testing a ZS-1 Terry

Turbine I

Goal of the ZS-1 testing configuration: Characterize turbine performance as a
function of speed and airflow.
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Single-phase (100% air) and two-phase (air and water) flows.
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14 1 ZS-1 Measured Turbine Power and Pressure vs Airflow
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nozzle.
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I s ZS- I Measured Turbine Power vs Airflow

Power vs Ai rfl ow (colored by ai rfl ow)
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Modeling and experiments revealed same powers can be produced by different
speeds / pressures at a given airflow.

Constant pressure trends identify a most efficient speed for the ZS-1 of 2,500 rpm.



16 i Zi Turbine Air Testing Model in MELCOR

Methodology:

+Define the pressure and temperature in the air supply tank

+Position the flow control valve to admit air at the reported experimental flowrate

+Specify the reported peak resistive torque developed by the dynamometer

+Specify the reported speed associated with the peak torque

+Allow the model to steadily increase from zero speed to the speed associated with
peak dynamometer torque (or to the highest speed below this speed that can be
achieved)

+Compare the peak turbine power predicted by the model to peak reported
dynamometer torque

Air Tank
Steam
Ring

Turbine
Casing

Environment

n

I

1



Measured and Predicted ZS-1 Power at an inlet Pressure of 90
psia and Differing Speeds
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TAMU Experimental Configuration for Testing a GS-2 Terry
Turbine



19 TAMU Experimental Configuration for Testing a GS-2 Terry
Turbine
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GS-2 Measured Turbine Power vs Airflow

Power vs Airflow (colored by airflow)
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Only single-phase (100% air) flow is considered here.

Testing is at higher airflow rates and power than for ZS-1.

Experiments reveal same powers can be produced by different speeds / pressures at
a given airflow.

Constant pressure trends identify a most efficient speed for the GS-2 of 2,000 rpm.
(note, will revise later).



Measured and Predicted GS-2 Power at an Inlet Pressure of 70
psia and Differing Speeds
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+Preliminary Results, Modeling Air Tests: 1.80 (ZS-1) vs BLANK (GS-2)



22 Measured and Predicted GS-2 Inlet Pressure and Airflow
History
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23 Measured and Predicted GS-2 Speed History
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24 Measured and Predicted GS-2 Power History
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25 I GS-2 Future Modeling

Continue development of GS-2 model in MELCOR.

Model additional air and water tests performed by TAMU for GS-2:

Inlet Pressure

(psia)

Min Test % Air Max Test % Air

20 50 100

30 20 100

50 5 100

70 5 100

Data for the steam tests has not been received for the GS-2 yet. Modeling of steam
flows will be performed later.
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Extra Slides



28 TAMU Experimental Configuration for Testing a GS-2 Terry
Turbine
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9 Experimental Modeling Summary

• The EPRI CAD updates to the governor valve have yielded noticeable differences in modeling and especially at near-closed
positions.
o Additional air test data from the TAMU experiments will provide further input for model refinement.

• TAMU steam nozzle experiments need to reconfigure the testing facility in order to achieve the appropriate Mach numbers
for Terry turbine applications in LWRs at low pressures (-100 psia).
o One solution is to discharge to a vacuum.
o Another option involves replacing the nozzle with a shorter and smaller orifice that could result in drastically under-expanded flow.
o Or a combination of these choices.

• TAMU steam nozzle experiments for assessing the validity of the wet-steam approximations will require more flexible two-

phase treatments that have not yet been explored for the nozzles.
o The use of high speed video (250K to 1M fps) and shock physics modeling will be required to properly quantify the condensation

shock for applications within CFD

• TAMU turbine air testing and system-level modeling results show that a Terry turbine can develop the same power at two

very different speeds.
o This discovery has large implications with respect to understanding how a RCIC or TDAFW system would respond to a loss of

electrical power for speed governing.
o Additional testing at TAMU of a GS-2 Terry turbine (typical for RCIC/TDAFW) with air and ZS-1 Terry turbine with steam will assist in

confirming this insight.

• The TAMU turbine air experiment data compared with system-level modeling suggest parasitic losses (i.e., turbine bearing

friction and wheel windage) could be important.
o Considering these losses allows the modeling of turbine performance to compare very well with measured performance in the TAMU

tests.


