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Brief introduction and motivation

Greenland and Antarctica ice sheets store most of the fresh water on hearth.

Modeling ice sheets (Greenland and Antarctica) dynamics is essential to provide estimates for sea level
rise* and and fresh water circulation.

Global mean sea-level is rising at the rate of 3.2 mm/yr and the rate is increasing.

Latest studies suggest possible increase of 0.3 — 2.5m by 2100.
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*DOE SciDAC project ProSPect (Probabilistic Sea Level Projection from Ice Sheet and Earth
System Models), Institutes: LANL, LBNL, SNL, ONL, NYU, Univ. of Michigan /



Brief introduction and motivation

* Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) driven by gravity. Source:
snow packing/water freezing. Sink: ice melting / calving in ocean.

* Greenland and Antarctica have a shallow geometry (thickness up to 4 km, horizontal extensions of
thousands of km).

Perito Moreno glacier

Bedrock

from http://www.climate.be
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Outline:

* Ice sheet equations

* MALI model

* Model initialization

* Ensemble ice sheet modeling of ocean melt variability at Thwaites glacier

e Uncertainty Quantification: Inference and Forward propagation
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Ice Sheet Modeling

Ice momentum equations

- Ice flow equations (momentum and mass balance)
V-u=0
Boundary condition at ice-bedrock interface :
(on+ Bu); =0 on I'g, u-n=20

National
Laboratories




Ice Sheet Modeling

Ice momentum equations

- Ice flow equations (momentum and mass balance)
V-u=0
Boundary condition at ice-bedrock interface :
(on+ Bu); =0 on I'g, u-n=20

with:

o =2uD—pl, Dij(u):§(8m-+8x]->
7 1

Nonlinear viscosity:

1 1
= —a(T) D)=, n>1, (tipically n ~3)
T

Viscosity is singular when ice is not deforming

Stiffening/Damage factor

,u* (x, Y, Z) — (/ﬁ(x, y) ,u(x, Y, Z) gb . stiffening factor that accounts fo %{l}m
modeling errors in rheolo



Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)
—V -0 =pg
V-u=0

Boundary condition at ice-bedrock interface :
(on+ Bu); =0 on I'g, u-n=>0

- Model for the evolution of the boundaries
(thickness evolution equation)

OH B _ 1
W_Hﬂw_v.(Hu), u_E/UdZ

z

- Temperature, Basal hydrology

- Coupling with other climate components (e.g. ocean, atmosphere) Sanda
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Stokes approximations in different regimes

Stokes(u, p) { —V - (2uD(u) — pI) = pg

V-u=0
Drop terms using Ug 5 (uy +vz) 5 (us +wr) i
scaling argument D(u.v)= | 1(u, +v v Ly + u:=| v
based on the fact that (v, 0) 3 (ty 2 Y 3 (02 +209) w
ice sheets are shallow [ T (us +ws) 2 (vatwy) —(us+vy) _
= p(|D(u,v)])
Quasi-hydrostatic 3" momentum equation continuity equation
approximation —Oulptz) — Dylprvs) — 0:2uw. —p) = —pg,  we = —(ug + vy)
= p=pg(s — 2) = 2p(uz + vy)

\/
FO(U, ’U) -V - (Q,uf) — pg(s — z)I) =0

First Order* or
Blatter-Pattyn model iy +v, L (uy+vy) tu
T 2 €T 2z
1 ]
2

WithD(u,v):[l(u fu) w20

"Dukowicz, Price and Lipscomb, 2010. J. Glaciol



Stokes approximations in different regimes

FO(u,v)

Ice regime:

. . Ice regime:
grounded ice with frozen bed shelves or fast sliding grounded ice
(0 0 Zu, I U T(uy+vg) 0]
D=|{0 0 1v, D= 1 (uy+uvy) vy 0
|0 0 w. | i 0 0 Wz |

p=pg(s—2z) = 2u(us +vy)

i \
STA (u, v) SSA (u,v)
\

Shallow Ice Approximation Shallow Shelf Approximation

Hybrid models, ~ STA+ SSA
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MPAS-Albany Landice model (MALI)
s st SThcs s Algorithm and Software

MPAS: Model for Prediction Across Scales, fortran finite volume library:
- works on Voronoi Tessellations

- conservative Lagrangian schemes for advecting tracers

- evolution of ice thickness

Albany: C++ finite element library built on Trilinos to enable multiple capabilities:
- Jacobian/adjoints assembled using automatic differentiation (Sacado).

- nonlinear and parameter continuation solvers (NOX/LOCA)

- large scale PDE constrained optimization (Piro/ROL)

- linear solver and preconditioners (Belos/AztecOO, ML/MeuLu/Ifpack)

Hoffman, et al. GMD, 2018

Tuminaro, Perego, Tezaur, Salinger, Price, SISC, 2016.
Tezaur, Perego, Salinger, Tuminaro, Price, Hoffman, GMD, 2015
Pereqgo. Price. Stadler. JGR. 2014
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MPAS-Albany Landice model (MALI)

Antarctic Ice Sheet velocity

Colored by ice sheet velocity surface velocity

(blue = slow, red = fast)
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Model initialization
(using PDE-constrained optimization)

GOAL

Find ice sheet initial state that

* matches observations (e.g. surface velocity, temperature, etc.)
* is in compliance with flow model and climate forcing

estimating unknown (basal friction) or poorly known parameters (bed topography)

Bibliography
- Arthern, Gudmundsson, J. Glaciology, 2010
- Price, Payne, Howat and Smith, PNAS, 2011
- Petra, Zhu, Stadler, Hughes, Ghattas, J. Glaciology, 2012
- Pollard DeConto, TCD, 2012
- W. J. J.Van Pelt et al., The Cryosphere, 2013
- Morlighem et al. Geophysical Research Letters, 2013
- Goldberg and Heimbach, The Cryosphere, 2013
- Michel et al., Computers & Geosciences, 2014
- Perego, Price, Stadler, Journal of Geophysical Research, 2014
- Goldberg et al., The Cryosphere Discussions, 2015




Deterministic Inversion

PDE-constrained optimization problem: cost functional

Problem: find initial conditions such that the ice matches available observations.

Optimization problem:
find 8 and H that minimize the functional®* J

7(8,9) :/Q%\u—uobsﬁds

surface velocity

2 mismatch
L / LQ‘ b— 1% ds stiﬂ"ening factor
Q 0y mismatch
+R(5, 9) regularization terms.
subject to ice sheet model equations u: computed depth averaged velocity
(FO or Stokes) ¢: stiffening factor

B: basal sliding friction coefficient
R(fB, ¢) regularization term

*Perego, Price, Stadler, Journal of Geophysical Research, 2014



Greenland Inversion
velocity mismatch only, tuning basal friction

Inversion with 1.6M parameters

Basal friction coefficient (kPa yr/m) surface velocity magnitude (m/yr)
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Antarctica Inversion
velocity and stiffening mismatches, tuning basal friction and stiffening

stiffening

4.0e-01

estimated softness

estimated basal friction
parameter [adim]

coefficient [kPa yr/m]
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velocity [m/yr]
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velocity [m/yr]

simulation details

#parameters: 2.5M #cores: 8640
#unknowns: 30M #nodes: 180
machine: Edison (NERSC) #hours:18
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Ice sheet response under extreme (unrealistic) forcing

Simulation by Tong Zhang and Matt Hof
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ABUMIP targets the response of the
ice sheet model to instantaneous
removal of all ice shelves, to
understand the sensitivity of ice
sheet to extreme climate forcing




Ensemble ice sheet modeling of ocean melt variability at Thwaites glacier
(slides and most of work courtesy of Matt Hoffman)

Marine ice sheet with overdeepened basin
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Marine Ice Sheet Instability predicted

Subshelf melt plus
Subshelf melt only ice dynamics
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Joughin et al. 2014
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Ocean Water Masses Controlling Ice Melting
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Climate Variability affecting Antarctic subshelf melting
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« ElI Nino/Southern Oscillation (2-7 yr)

« Southern Annular Mode (20-30 yr)

 Pacific Decadal Oscillation (15-25 yr, 50-70 yr)
 Atlantic Multidecadal Oscillation (50-80 yr)

How might climate variability affect marine ice sheet stability?




Model Setup

MPAS-Albany Land Ice (MALI) PE——— tickness (m)
3d First-order momentum = | B :
balance approx. (Blatter/Pattyn) =_ »
Variable resolution regional ' :

grid (1-8 km)

|

Thickness, bed elevation from E
BEDMAP2

Linear basal friction law

Basal friction parameter
optimized from INSAR surface
velocity

Fixed temperature field (pers.
comm. Frank Pattyn)

Calving front fixed in time
SMB from RACMO?2

0.000e+00

Validated by observed
grounding line flux transient Bed elevation
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Results: single run (amplitude=300m, period =20yr)
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Results: all ensembles

Mass loss delay enhanced by
* Larger amplitude

£ * Longer period
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Mechanism for delay in mass loss

1. Asymmetric melt forcing — primary mechanism (~75% of delay)

Melt rate
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for delay)
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difference
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delay rate
(yr century1)
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Mechanism for delay in mass loss

2. Nonlinear ice dynamic response to ice shelf melting
— secondary mechanism (~25% of delay)

Decreasing melt — large decrease in mass loss
Increasing melt — small increase in mass loss
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Conclusion

Subshelf melt variability affects grounding line
evolution and sea level contribution

* Variable runs always retreat /ess than steady runs
 Effects small (~3%) for realistic (?) modes of variability

* ~10% less SLR for plausible large amplitude, long period
variability after hundreds of years

» Decadal rates of change can differ by up to 50%
— implications for interpreting mass balance observations, e.g., GRACE

« Caveats: parameterized melt, simplistic variability,
uncertain bed topography
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Uncertainty Quantification

(sheperd et al. 2012)

Ultimate goal: 10
quantify the Sea Level Rise 0p 109
and related uncertainties ok ]
g | g
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Current Work flow:

* Perform adjoint-based deterministic inversion to estimate initial ice sheet state
(i.e. characterize the present state of ice sheet to be used for performing prediction
runs).

* Bayesian inference: Gaussian posterior low-rank approximation; use deterministic
inversion to characterize the parameter distribution (i.e, use the inverted field as mean
field of the parameter distribution and approximate its covariance using
sensitivities/Hessian).

» Forward Propagation




Bayesian Inference
Gaussian approximation*

It is possible to approximated the distribution of the basal friction informed by the
velocity data with a Gaussian distribution* using the Hessian of the objective functional

of the initialization problem.

prior

—1
Epos‘c — (H + E_l ) — (EpriorH + I)_l Eprior

Compute approximation of posterior using low-rank approximation:
YpriorH & WTATV;T (low rank approximation - randomized SVD )
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Bayesian Inference
Gaussian approximation*

It is possible to approximated the distribution of the basal friction informed by the
velocity data with a Gaussian distribution* using the Hessian of the objective functional
of the initialization problem.

YpriorH = WA,V (low rank approximation - randomized SVD )

I
T . .
Yipost = Xprior — WrA WS + O g (Sherman-Morrison-Woodbury formula)
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Bayesian Inference and Forward Propagation

Prior variance Posterior variance

Histogram of boostrapped mean
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variance of the prior and posterior | sea level change after 100 years due to
distribution of the basal friction Greenland from 100 fwd simulations

Challenge: dimension of parameter space is too high for forward propagation. We want to mitigate.
this with a multifidelity approach, using lower fidelity models




Bayesian Inference and Forward Propagation
dimension reduction by adding physics

Subglacial hydrology models rely on an handful of parameters that, to first approximation can be
considered uniform.

Basal Friction (kPa yr/m) Basal Friction (kPa yr/m)

Two-step estimation of basal friction parameters
o Estimate spatial dependent basal friction by

F minimizing mismatch between observed surface
velocity and FO surface velocity (usual basal
friction estimation)
Calibrate the basal hydrology model by matching
that (target) basal

| I
0.01 : 1e+04

Left: target basal friction [kPa yr/m], from FO calibration
Right: basal friction computed w/ calibrated hydrology model




Considerations on Bayesian Calibration
and Uncertainty Propagation

* Bayesian Inference:
High dimensional parameter space. Even if we accept the Gaussian approximation
for the posterior, forward propagation is still unfeasible. Performing the Bayesian
calibration to recover the true distribution for the parameters is also unfeasible.

%
: high-fidelity
model

low-fidelity
mne

7] model
On

bw-fidelity
model

low-fidel

low-fidelity
modd

model

* Strategies for forward propagation:
-adopt a multifidelity strategy.
- build emulator (polynomial chaos, Neural Networks, ...) of the forward model
and sample emulator (issue: lots of model runs needed to build emulator)
- use cheap physical models (e.g. SIA, SSA) or low resolution solves to reduce the
cost of building the emulator.
- use sensitivitives and active subspace methods.
- use techniques such as the compressed sensing to adaptively select significant
modes and the basis for the parameter space.
- Improve fidelity of the model (e.g. physicalbased model for sliding considering
subglacial hydrology) to reduce the parameter space.




Thank you!



