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Brief introduction and motivation

• Greenland and Antarctica ice sheets store most of the fresh water on hearth.

• Modeling ice sheets (Greenland and Antarctica) dynamics is essential to provide estimates for sea level
rise* and and fresh water circulation.

• Global mean sea-level is rising at the rate of 3.2 mm/yr and the rate is increasing.

• Latest studies suggest possible increase of 0.3 — 2.5m by 2100.
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*DOE SciDAC project ProSPect (Probabilistic Sea Level Projection from Ice Sheet and Earth
System Models), Institutes: LANL, LBNL, SNL, ONL, NYU, Univ. of Michigan
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Brief introduction and motivation

• Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) driven by gravity. Source:
snow packing/water freezing. Sink: ice melting / calving in ocean.

• Greenland and Antarctica have a shallow geometry (thickness up to 4 km, horizontal extensions of
thousands of km).
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Outline:

• Ice sheet equations

• MALI model

• Model initialization

• Ensemble ice sheet modeling of ocean melt variability at Thwaites glacier

• Uncertainty Quantification: Inference and Forward propagation



Ice Sheet Modeling

Ice momentum equations

- Ice flow equations (momentum and mass balance)

f —V • a = pg
V•u= 0

Boundary condition at ice-bedrock interface :

(an + Ou)11 = 0 on Fo, u • n = 0



Ice Sheet Modeling

Ice momentum equations

- Ice flow equations (momentum and mass balance)

f —V • a = pg
V • u = 0

Boundary condition at ice-bedrock interface :

(an + Ou)11 = 13 on Fo, u • n = 0

with:
( alli alli

a = 2p,D — pI, Dij(u) = —1  
2 x.i + OXi

Nonlinear viscosity:

1
p, = —

2
a(T) 1D(u)17 -1-

/ 
1

Viscosity is singular when ice is not deforming

n > 1, (tipically n ") 3)

Stiffening/Damage factor

Pi* (xl yl z) = 0(x, y) P(x, yl z) 0 : stiffening factor that accounts fo
modeling errors in rheolo



Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)

f —V • a = pg
V•u=0

Boundary condition at ice-bedrock interface :

(an + 011)11 = 0 on F0, u • n = 0

- Model for the evolution of the boundaries
(thickness evolution equation)

OH , 1
  n flux - V • =(HU), 171. 

HOt
f u dz

z

- Temperature, Basal hydrology
- Coupling with other climate components (e.g. ocean, atmosphere)



Stokes approximations in different regimes

Stokes(u, p)

Drop terms using
scaling argument

based on the fact that
ice sheets are shallow

Quasi-hydrostatic
approximation

FO(u, v)

First Order* or
Blatter-Pattyn model

f —V • (2,u,D(u) — pI)
V • u 0

ux

D(u, v) = 2 (uy ± vx)

_ 2 (uz -F3i)0

,u, = 4D(u, OD

pg

1 1(uy + vx) 2 (uz +3/.) -

vy

(vz ±w)

3rd momentum equation

(vz +y).,0

—(ux +vy) _

—j,.4-trr(j— ij1? 4 if t - I z — az (2 [tw z — 13) = —log,

> p = pg(s — z) — 2p,(u, + vy)

—V • (2p1:0 — pg(s — z)I) = 0

2ux + vy
with b(u, v) = [ ,

i (uy + vx)

*Dukowicz, Price and Lipscomb, 2010. J. Glaciol

(uv + vx) 2uz

ux + 2vy I- vz

u

U := [

w 

v

continuity equation

wz = —(ux + vy)



Stokes approximations in different regimes

Ice regime:
grounded ice with frozen bed

D
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Ice regime:
shelves or fast sliding grounded ice

D=

ux 2 (tty + Vx) 0

2 (UY ± Vx) VY 0

0 0 Wz

p = pg (s — z) — 2,a(ux + vy)

SSA(u, v)

Shallow Shelf Approximation

Hybrid models, ̂J SIA + SSA



M PA
Model for Prediction Across Scales

MPAS-Albany Landice model (MALI)

Algorithm and Software

ALGORITWFTWARE TOOLS

Finite Volume on"Usonoi Meshe MPAS
Linear Finite Elements on test/hexas

Quasi-Newton optimization (L-BFGS)

Nonlinear solver  method) 

Krylov linear solvers/Prec

Automatic differentiation

Albany

ROL

NOX

Aztec00/ML, Belos/MueLu

Sacado

MPAS: Model for Prediction Across Scales, fortran finite volume library:

- works on Voronoi Tessellations

- conservative Lagrangian schemes for advecting tracers

- evolution of ice thickness

Albany: C++ finite element library built on Trilinos to enable multiple capabilities:

- Jacobian/adjoints assembled using automatic differentiation (Sacado).

- nonlinear and parameter continuation solvers (NOX/LOCA)

- large scale PDE constrained optimization (Piro/ROL)

- linear solver and preconditioners (Belos/Aztec00, ML/MeuLu/Ifpack)

Hoffman, et al. GMD, 2018
Tuminaro, Perego, Tezaur, Salinger, Price, SISC, 2016.
Tezaur, Perego, Salinger, Tuminaro, Price, Hoffman, GMD, 2015
Pereao, Price, Stadler, JGR, 2014



MPAS-Albany Landice model (MALI)

Antarctic Ice Sheet velocity

Ronne ice shelf
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Thwaites
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Colored by ice sheet velocity surface velocity
(blue = slow, red = fast)



Model initialization

(using PDE-constrained optimization)

GOAL

Find ice sheet initial state that

• matches observations (e.g. surface velocity, temperature, etc.)

• is in compliance with flow model and climate forcing

estimating unknown (basal friction) or poorly known parameters (bed topography)
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Deterministic Inversion
PDE-constrained optimization problem: cost functional

Problem: find initial conditions such that the ice matches available observations.

Optimization problem:

find /3 and H that minimize the

JP, 0) — u — n°1' 12 ds

functional* J

surface velocity
mismatch

stiffening factor
mismatch

regularization terms.

subject to ice sheet model equations
(FO or Stokes)

u: computed depth averaged velocity
0: stiffening factor
0: basal sliding friction coefficient
R,(3, 0) regularization term

*Perego, Price, Stadler, Journal of Geophysical Research, 2014



Greenland Inversion
velocity mismatch only, tuning basal friction

Inversion with 1.6M parameters
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Antarctica Inversion
velocity and stiffening mismatches, tuning basal friction and stiffening

estimated basal friction
coefficient [kPa yr/m]
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Ice sheet response under extreme (unrealistic) forcing

sea level rise [mm]
lee speed (rn yr ')
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ABUMIP targets the response of the
ice sheet model to instantaneous
removal of all ice shelves, to
understand the sensitivity of ice
sheet to extreme climate forcing

Simulation by Tong Zhang and Matt Hoffman
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Ensemble ice sheet modeling of ocean melt variability at Thwaites glacier
(slides and most of work courtesy of Matt Hoffman)

Marine ice sheet with overdeepened basin

Schroeder et al. 2013
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Pine lsland Ice Shelf

Grounding fine

Ocean Water Masses Controlling Ice Melting
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• El Nino/Southern Oscillation (2-7 yr)

• Southern Annular Mode (20-30 yr)

• Pacific Decadal Oscillation (15-25 yr, 50-70 yr)

• Atlantic Multidecadal Oscillation (50-80 yr)

How might climate variability affect marine ice sheet stability?
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Model Setup

• MPAS-Albany Land Ice (MALI)
• 3d First-order momentum

balance approx. (Blatter/Pattyn)
• Variable resolution regional

grid (1-8 km)

• Thickness, bed elevation from
BEDMAP2

• Linear basal friction law
• Basal friction parameter

optimized from InSAR surface
velocity

• Fixed temperature field (pers.
comm. Frank Pattyn)

• Calving front fixed in time
• SMB from RACMO2

• Validated by observed
grounding line flux transient

-111ckness (m)
3.500e+03

2525

1750
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Results: single run (amplitude=300m, period =20yr)

Speed (m/yr)
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Results: all ensembles
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Mechanism for delay in mass loss

1. Asymmetric melt forcing - primary mechanism (-75% of delay)

Melt rate
(m yr-1)
(adj usted
for delay)

20

10 -

Melt rate
difference
from control -1
(m yr-1)

Mass loss
delay rate
(yr century-1)

—2

—3

0

—10

50 100 150 200 250 350 400 450 500

,

, ... -ow

.

1
/

17

1
1

1 II1

1"L,

,
,
V

,

t
.......v, Li

0 50 lllV 150 200 250 300 350 400 450 500

N.

, "id. \

,...
•
.......4*4,p../........6..

1 .,.
-•-••••• ''''

,

*7.- ,...
,..

%.,1

aVae'411r-\---i-
i

.. i ...,
1

ji

r',. i:
k I \
\ ri ;,.‘

/1"
i

...,

50 100 150 200 250 300 350 400



Mechanism for delay in mass loss

2. Nonlinear ice dynamic response to ice shelf melting

- secondary mechanism (-25% of delay)

• Decreasing melt —› large decrease in mass loss
• Increasing melt —› small increase in mass loss
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C onclusion

Subshelf melt variability affects grounding line
evolution and sea level contribution

• Variable runs always retreat less than steady runs

• Effects small (-3%) for realistic (?) modes of variability

• -10% less SLR for plausible large amplitude, long period
variability after hundreds of years

• Decadal rates of change can differ by up to 50%
— implications for interpreting mass balance observations, e.g., GRACE

• Caveats: parameterized melt, simplistic variability,
uncertain bed topography



Uncertainty Quantification

Ultimate goal:
quantify the Sea Level Rise
and related uncertainties
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Current Work flow:
• Perform adjoint-based deterministic inversion to estimate initial ice sheet state

(i.e. characterize the present state of ice sheet to be used for performing prediction
runs).

• Bayesian inference: Gaussian posterior low-rank approximation; use deterministic
inversion to characterize the parameter distribution (i.e, use the inverted field as mean
field of the parameter distribution and approximate its covariance using
sensitivities/Hessian).

• Forward Propagation
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Bayesian Inference
Gaussian approximation*

It is possible to approximated the distribution of the basal friction informed by the
velocity data with a Gaussian distribution* using the Hessian of the objective functional
of the initialization problem.

Epost (-ff Eprlior)
1

— (EpriorH 
T\-1 

2-,prior

Compute approximation of posterior using Iow-rank approximation:
EpriorH WrArVrT (low rank approximation - randomized SVD

Eigenvectors

mode 4

*T. Isaac, N. Petra, G. Stadler, O. Ghattas, JCP, 2015



Bayesian Inference
Gaussian approximation*

It is possible to approximated the distribution of the basal friction informed by the
velocity data with a Gaussian distribution* using the Hessian of the objective functional
of the initialization problem.

EpriorH WrArVrT (low rank approximation - randomized SVD

( 

N_...4, Az )

Epost — Eprior WrArWrT + 0 L  1+ Ai
i=r+1

101 -
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Greenland

2000 3000
index

-1000 5600

*T. Isaac, N. Petra, G. Stadler, O. Ghattas, JCP, 2015

10
8

106

S 104
To>

g 102

(Sherman-Morrison-Woodbury formula)

Antarctica*
-- -409,545 parameters
—1,190,403 parameters

10
-2 

0 1 000 2000 3000 4000
number



Prior variance

Bayesian Inference and Forward Propagation

Posterior variance —

variance of the prior and posterior
distribution of the basal friction

Histogram of boostrapped mean

J 8.0x1012

sea level change after 100 years due to
Greenland from 100 fwd simulations

Challenge: dimension of parameter space is too high for forward propagation. We want to mitigate
this with a multifidelity approach, using lower fidelity models



Bayesian Inference and Forward Propagation

dimension reduction by adding physics

Subglacial hydrology models rely on an handful of parameters that, to first approximation can be
considered uniform.

Two-step estimation of basal friction parameters
Estimate spatial dependent basal friction by
minimizing mismatch between observed surface
velocity and FO surface velocity (usual basal
friction estimation)
Calibrate the basal hydrology model by matching
that (target) basal

Left: target basal friction [kPa yr/m], from FO calibration
Right: basal friction computed w/ calibrated hydrology model



Considerations on Bayesian Calibration
and Uncertainty Propagation

• Bayesian Inference:
High dimensional parameter space. Even if we accept the Gaussian approximation
for the posterior, forward propagation is still unfeasible. Performing the Bayesian
calibration to recover the true distribution for the parameters is also unfeasible.

• Strategies for forward propagation:
-adopt a multifidelity strategy.
- build emulator (polynomial chaos, Neural Networks, ...) of the forward model
and sample emulator (issue: lots of model runs needed to build emulator)
- use cheap physical models (e.g. SIA, SSA) or low resolution solves to reduce the
cost of building the emulator.
- use sensitivitives and active subspace methods.
- use techniques such as the compressed sensing to adaptively select significant
modes and the basis for the parameter space.
- Improve fidelity of the model (e.g. physicalbased model for sliding considering
subglacial hydrology) to reduce the parameter space.

high-fidelity
model

low-fidelity
model

- fidelitv
model

low-ficTc
low-fider ty

mock'
model

err( )r



Thank you!


