
PRESENTED BY

Dan Ibanez

Sandia National Laboratories is a rnultirnission
laboratory rnanaged and operated by National

Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell

international lnc., for the U.S. Department of
Energy's National Nuclear Security Administration

under contract DE-NA0003S2S.

SAND2019-6002PE

2 Kokkos Project and Ecosystem

The Kokkos project based at Sandia includes collaborators at Oak Ridge, Los
Alamos, and Argonne working to advance portable HPC C++ programming.

The Kokkos project members provide the following products and services:

1. The Kokkos ecosystem including the Kokkos library, KokkosKernels, and
profiling tools

2. Dedicated support for Kokkos ecosystem users

3. Outreach, training, and tutorial events for DOE software developers to learn
portable C++ HPC programming

4. Participate in ISO C++ standardization to ensure C++ continues to serve the
interests of the HPC community

■

3 Goal of the Kokkos library

1. Single-source: There is no architecture-specific syntax or architecture-specific
files in user code

2. Portable: The same source code compiles and executes correctly on all platforms

3. Performance: That source code performs close to what can be hand-coded using
architecture-specific tools

DOE-relevant "backends":

1. OpenMP threading: handles multi-core CPUs

2. CUDA: handles NVIDIA GPUs

3. OpenMP target offload: hopes to handle all GPUs, but not vendor favorite (each
vendor prefers their vendor-specific thing)

4. HIP: AMD now tells us this is the way to go for their GPUs (e.g. Frontier)

5. ROCm: AMD's initial GPU backend, which they later dropped

6. We are working on Aurora2l & on track to supporting it

■

4 I Kokkos GitHub Site

ii GitHula, lnc. [US] https:figithub.comjkokkos/kokkos

ch or jump to... Pull requests issues Marketplace Ex

kokkos kokkos

<> Code %Li issues 2435 n Pull requests 10 [1,1:1 Projects 12

Kokkos C++ Perf rmance Portability Programming EcoSystem: The P ro irar

Ask questions,
report possible bugs,
request features

Documentation:
Programming Guide,
API Reference

I5 Some Relevant Sandia Kokkos Simulation Codes

1. LAMMPS: Broad range of molecular
dynamics capabilities, significant
literature impact

2. MALI/ProSPect: Simulating arctic
land ice erosion to improve our
understanding of climate change

3. LGR: Demonstrating unstructured
mesh adaption on GPUs with
applications to fluid-structure
interaction and shocks

7 Step I: Data-Oriented Design

Possibly the most difficult step in the process! For example, you may need to design
your code architecture from the beginning such that data is stored in contiguous
arrays and algorithms are expressed as for-loops. It may require a serious refactor,
but don't be discouraged! Complex data structures and algorithms including
unstructured mesh adaptation can fit this Data-Oriented Design.

std::vector<double> e(100 * 1000);
for (std::size_t i = 0; i < aisize(); ++i) {

a[i] = 1.0;
}

double sum = 0.0;
for (std::size_t i = 0; i < aisize(); ++i) {

sum += a[i];
)

•

8 Step 2: Separate loop bodies

C++11 introduces the lambda, which allows the compiler to create an object that
contains the variables used and code executed in a loop body.

std::vector<double> a(100 * 1000);
auto bodyl = W(std::size_t i) i
a[i] = 1.0;

);
for (std::size_t i = 0; i < aisize(); ++i) .(

body1(i);
1

double sum = 0.0;
auto body2 = [8(1(std::size_t i) {

return a[i];
);
for (std::size_t i = 0; i < aisize(); ++i) {

sum += body2(i);
)

9 Step 3:Apply Kokkos

C++ for-loops expressing certain parallel patterns may now be replaced with the
appropriate Kokkos parallel pattern, and data structures may also be replaced.

Kokkos::View<double*> a(llnameH l 100 * 1000);
auto bodyl = KOKKOS_LAMBDA(std::size_t i) {
a[i] = 1.0;

};
Kokkos;:parallel_for(Kokkos::Rangepolicy(0, a.size()), body1);

double sum = 0.0;
auto body2 KOKKOS_LAMBDA(std::size_t i) {

return a[i];
1;
Kokkos::parallel_reduce(Kokkos::RangePolicy(0/ a.size()), body2, sum);

10 I Step 4: (Wait a few years... then) Use standard C++

The Kokkos project is working to ensure that standard C++ eventually contains the
necessary tools to do portable HPC programming, including 4 team members who
are active on the committees of C++ and OpenMP. Here is what our example code
might look like in the future:

std::vector<double, std::gpu_anocator> a(100 * 1000);
std::fill(std::execution::gpu, a.begin(), a.end(), 1.0);
auto sum = std::reduce(std::execution::gpu r a.begin() a.end());

