SAND2019- 6002PE

The Kokkos Project

PRESENTED BY

Dan Ibanez

Sandia National Laboratories is a multimission

laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc,, for the U.S. Department of
Energy’s National Nuclear Security Administration
I under contract DE-NA0003525.



Kokkos Project and Ecosystem

The Kokkos project based at Sandia includes collaborators at Oak Ridge, Los
Alamos, and Argonne working to advance portable HPC C++ programming.

The Kokkos project members provide the following products and services:

1. The Kokkos ecosystem including the Kokkos library, KokkosKernels, and
profiling tools

2. Dedicated support for Kokkos ecosystem users

3. Outreach, training, and tutorial events for DOE software developers to learn
portable C++ HPC programming

4. Participate in ISO C++ standardization to ensure C++ continues to serve the
interests of the HPC community




3 | Goal of the Kokkos library

Single-source: There 1s no architecture-specific syntax or architecture-specific
files in user code

Portable: The same source code compiles and executes correctly on all platforms

Performance: That source code performs close to what can be hand-coded using
architecture-specific tools

DOE-relevant “backends’:

1.
2.
3.

OpenMP threading: handles multi-core CPUs
CUDA: handles NVIDIA GPUs

OpenMP target offload: hopes to handle all GPUs, but not vendor favorite (each
vendor prefers their vendor-specific thing)

HIP: AMD now tells us this 1s the way to go for their GPUs (e.g. Frontier)
ROCm: AMD?s 1nitial GPU backend, which they later dropped

We are working on Aurora2l & on track to supporting it




4+ | Kokkos GitHub Site

{} & GitHub, Inc. [US] | https://github.com/kokkos/kokkos

Pull requests Issues Marketplace Ex

] kokkos / kokkos

<» Code Projects 12
Kokkos C++ Perf@rmance Portability Programming EcoSystem: The Pro
Ask questions, Documentation:
report possible bugs, Programming Guide,
request features API| Reference



5

2. MALI/ProSPect: Simulating arctic

3. LGR: Demonstrating unstructured

Some Relevant Sandia Kokkos Simulation Codes

LAMMPS: Broad range of molecular
dynamics capabilities, significant
literature impact

land ice erosion to improve our
understanding of climate change

mesh adaption on GPUs with
applications to fluid-structure
interaction and shocks




Portable HPC C++ in 4 steps

—_—_




7 1 Step |: Data-Oriented Design

Possibly the most difficult step in the process! For example, you may need to design
your code architecture from the beginning such that data is stored in contiguous
arrays and algorithms are expressed as for-loops. It may require a serious refactor,
but don’t be discouraged! Complex data structures and algorithms including
unstructured mesh adaptation can fit this Data-Oriented Design.

std::vector<double> a(100 x 1000);

for (std::size_t 1 = 0; 1 < a.size(); ++1i) {
al[il = 1.9;

}

double sum = 0.6;
for (std::size_t 1 = 8; 1 < a.size(); ++1i) {
sum += a[il;

}




s | Step 2: Separate loop bodies

C++11 introduces the lambda, which allows the compiler to create an object that
contains the variables used and code executed in a loop body.

std::vector<double> a(100 * 1000);

auto bodyl = [&](std::size_t 1) {
alil] = 1.9;

i

for (std::size t 1 =0; 1 < a.size(); ++1) {
body1(i);

¥

double sum = 0.6;

auto body2 = [&](std::size_t i) {
return al[il;

i

for (std::size t 1 =0; 1 < a.size(); ++1i) {
sum += body2(i);

¥




Step 3: Apply Kokkos

C++ for-loops expressing certain parallel patterns may now be replaced with the
appropriate Kokkos parallel pattern, and data structures may also be replaced.

Kokkos: :View<doublex> a("name", 100 x 1000);
auto bodyl = KOKKOS_LAMBDA(std::size_ t 1) {
alil = 1.0;
i
Kokkos::parallel for(Kokkos::RangePolicy(8, a.size()), bodyl);

double sum = 0.9;

auto body2 = KOKKOS_LAMBDA(std::size t i) {
return alil;

i

Kokkos::parallel_reduce(Kokkos::RangePolicy(®, a.size()), body2, sum);



o I Step 4: (Wait a few years... then) Use standard C++ -

The Kokkos project 1s working to ensure that standard C++ eventually contains the
necessary tools to do portable HPC programming, including 4 team members who
are active on the committees of C++ and OpenMP. Here is what our example code
might look like in the future:

std::vector<double, std::gpu_allocator> a(160 * 10060);
std::fill(std::execution::gpu, a.begin(), a.end(), 1.0);
auto sum = std::reduce(std::execution::gpu, a.begin(), a.end()); I



