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Scenario

Training Data is Weakly Labelled
Consists of bags of instances

Unobserved: instance labels

Observed: whether each bag has some positive instance

Contains a Waldo
Instance

Has no Waldo
instance
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e Learn instance classifier ") aWaldo instance?

e Learn bag classifier Does { L } have a Waldo instance?

+ Do both: interpretability Does { FE

If yes, where is Waldo?

} have a Waldo instance?
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ADAPD Problem:

Seismic Event Detection

e Training data:

e GGoal:
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ADAPD Needs

e Sparse labels: labeled data is, will be, hard to find.
 Consistently labeled data, is will, be even harder.

* Multi-phenomenology: labels can come from a different data
source (e.g., predict chemical release from activity logs)

* We observe collection of events, not isolated events
e Traditional ML: data point is a red/blue event

* Practical problems: data point contains a red/blue event.
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Why is multiple instance
learning hard?

e |ncreased flexibility of multi-instance learning comes at the cost of increased
complexity of algorithms.

* L oose information leads to a larger search space constrained at two levels (bags
and instances).

e | abels can be correlated.

e |[nstance labels may be structured as sequences - if one frequency is event, then
more likely neighboring frequency also is event.

e Variance in bag sizes pose an additional challenge.
 More activities in a day does not mean increased likelihood of a rare event.
e This is an emerging field without established methods and associated software.

e \We are at the leading edge.
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How to do multiple instance learning?

 Use probabilistic latent variable model (MI-logreQ)

e Variables for each bag:

* Bag label y (0/1)

* |nstance feature vectors x1..Xm
_ X1 Xi XM
e [atent instance labels h1..hm (0/1) O Q Q
 Multiple instance assumption: y = 1 if some hi=1
* Model hi|xi independently using logistic regression

e P(hi=1[xi) = sigmoid(B™xi) where B is regression parameter



Status

* Implemented existing method, initial results on seismic and
cybersecurity data. Focus: sequence-structured instances.

 Extended method to account for instance label
dependencies using conditional random field (MI-CRF)
instead of logistic regression

e MI-Logreg: model hi|x; independently

* MI-CREF: jointly model h1..hm [X1..xm with CRF

* Wrongly assuming independence can lead @ @ @

to false positives under positive dependence
(example: suppose labels are always equal)
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Multi-instance learning is
Interpretable by design
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Instances ordered by frequency on x-axis.
Blue line indicates probability a frequency contains event P(hi=1|xi)
Is 0/1 prediction of h;
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Performance on earthquake detection

MI-CRF

Ml-Logreg

Logreg
RF

e Labelled raw signal from LYNM decomposed into contributions from 9 non-
overlapping frequency ranges. Each bag has 9 instances. ~5000 bags.

e Logreg and RF (random forest) are vanilla bag classifiers which concatenates the
9 instance feature vectors to form bag feature vector.

* No instance labels, so all metrics are bag-level.
 MI-Logreg higher AUC than Logreg (better model, less parameters)
e MI-CRF lower FP than MI-Logreg b/c model dependences. Both not calibrated.

 RF higher AUC than Logreg. Future work: MI-RF (can’t use gradient descent)



Future work

* Accounting for bag size variability

e Example: time of event known | . ,.
with differing uncertainty ; ﬂg
| l”ll'”

e With Ml-logreqg,
larger bag -> higher bag positive probability.
Larger bag -> higher bag probability in
e CRF addresses this issue for sequence data only. cybersecurity application

* |mproving interpretability
* Want fewer predicted positive instances

* |ncorporating nonlinear models;
improving calibration

--------

More interpretable. Know

L , Less interpretable
which instance to examine

e Other ADAPD applications:
* Text data: A document is a bag. Can we identify the suspicious paragraph?

e Multi-phenomenology: Fuse data sets
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Backup
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Malware Classification
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e (Goal

If so, which segments are malicious?
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