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Scenario
• Training Data is Weakly Labelled

• Consists of bags of instances

• Unobserved: instance labels

• Observed: whether each bag has some positive instance
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Goals
• Learn instance classifier

• Learn bag classifier

• Do both: interpretability

Is

Does

a Waldo instance?

have a Waldo instance?

Does { have a Waldo instance?

If yes, where is Waldo?

Sandia
National
Laboratories



ADAPD Problem:
Seismic Event Detection

• Training data:

• Goal: Does
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ADAPD Needs

• Sparse labels: labeled data is, will be, hard to find.

• Consistently labeled data, is will, be even harder.

• Multi-phenomenology: labels can come from a different data
source (e.g., predict chemical release from activity logs)

• We observe collection of events, not isolated events

• Traditional ML: data point is a red/blue event

• Practical problems: data point contains a red/blue event.
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Why is multiple instance
learning hard?

• Increased flexibility of multi-instance learning comes at the cost of increased
complexity of algorithms.

• Loose information leads to a larger search space constrained at two levels (bags
and instances).

• Labels can be correlated.

• Instance labels may be structured as sequences - if one frequency is event, then
more likely neighboring frequency also is event.

• Variance in bag sizes pose an additional challenge.

• More activities in a day does not mean increased likelihood of a rare event.

• This is an emerging field without established methods and associated software.

• We are at the leading edge.
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How to do multiple instance learning?

• Use probabilistic latent variable model (MI-logreg)

• Variables for each bag:

• Bag label y (0/1)

• Instance feature vectors )(LAM

• Latent instance labels hl..hm (OM

• Multiple instance assumption: y= 1 if some hi =1

• Model hilx; independently using logistic regression

• P(Iii-11)(;) = sigmoid(BTx1) where B is regression parameter



Status
• Implemented existing method, initial results on seismic and

cybersecurity data. Focus: sequence-structured instances.

• Extended method to account for instance label
dependencies using conditional random field (MI-CRF)
instead of logistic regression

• MI-Logreg: model hilx; independently
hi

• MI-CRF: jointly model hl..11m lxl..xm with CRF

• Wrongly assuming independence can lead
to false positives under positive dependence
(example: suppose labels are always equal)
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Multi-instance learning is
interpretable by design
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Performance on earthquake detection

AUC FP

MI-CRF

MI-Logreg

Logreg

F

.75(.02) .16(.02)

.77(.01) .24(.01)

.71(.01) .16(.01)

.77(.01) .16(.02)

• Labelled raw signal from LYNM decomposed into contributions from 9 non-
overlapping frequency ranges. Each bag has 9 instances. -5000 bags.

• Logreg and RF (random forest) are vanilla bag classifiers which concatenates the
9 instance feature vectors to form bag feature vector.

• No instance labels, so all metrics are bag-level.

• MI-Logreg higher AUC than Logreg (better model, less parameters)

• MI-CRF lower FP than MI-Logreg b/c model dependences. Both not calibrated.

• RF higher AUC than Logreg. Future work: MI-RF (can't use gradient descent)



Future work
• Accounting for bag size variability

• Example: time of event known
with differing uncertainty

• With MI-logreg,
larger bag -> higher bag positive probability.

• CRF addresses this issue for sequence data only.

• Improving interpretability

• Want fewer predicted positive instances

• Incorporating nonlinear models;
improving calibration

• Other ADAPD applications:
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More interpretable. Know
which instance to examine

• Text data: A document is a bag. Can we identify the suspicious paragraph?

• Multi-phenomenology: Fuse data sets

• Graph data: can we identify the patterns to search for?
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Malware Classification
• Training data:

• Goal: is
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Contains no malicious
segments

1 malware?

If so, which segments are malicious?
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References
• Solving the Multiple-Instance Problem with Axis Parallel Rectangles,

Dieterrich, JAIR 1997: Introduced MI learning problem - know
whether molecule binds to protein, but not which of its conformations

• Joint Multi-label Multi-instance Learning for Image Classification,
Zha, CVPR 2008: CRF for image classification.

• Efficient Multi-Instance Learning for Activity Recognition from Time
Series Data, Guan, ICML 2016: Generative model, does not actually
use multiple instance labelling assumption

• Discriminative probabilistic framework for generalized multi-instance
learning, Pham, ICASSP 2018: Extension of MI-Logreg method.
Allows for more general bag label model, i.e. bag positive if # positive
instances > non-zero threshold
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