

energy.gov/solar-office

Gen 3 Pumps & Valves WebEx

Gen3 Liquid-Pathway Topic 1 & Topic 2 Teams

5-23-2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Gen 3 Topic 1 Overview

2 Introductions of Topic 1 & 2 Teams

3 Technical Milestones & Schedule of Topic 1 Project

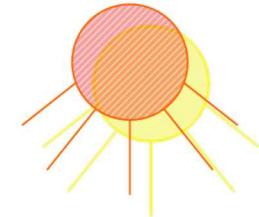
4 Molten Salt Pumps Technical Challenges for Topic 1 System

5 Molten Salt Valves Technical Challenges for Topic 1 System

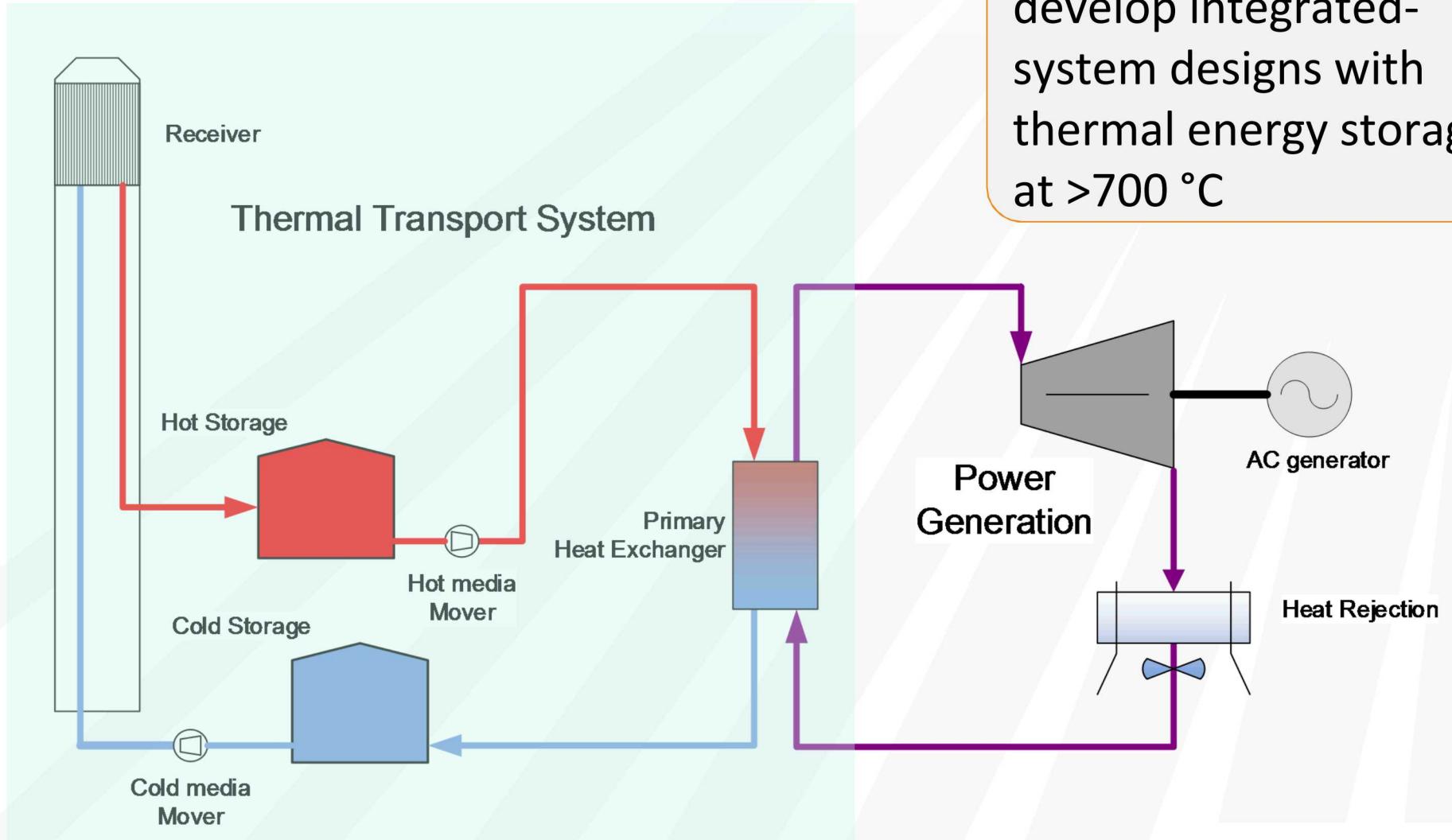
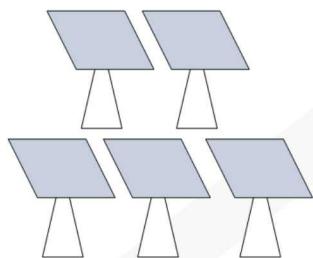
6 Projects Next Steps

Gen3 Liquid Pathway

- Leverage expertise with liquid-HTF towers
- Examine two, alternative high-temp liquids
- Use low-cost, thermally stable energy storage media
- Design for sCO₂ Brayton-cycle integration

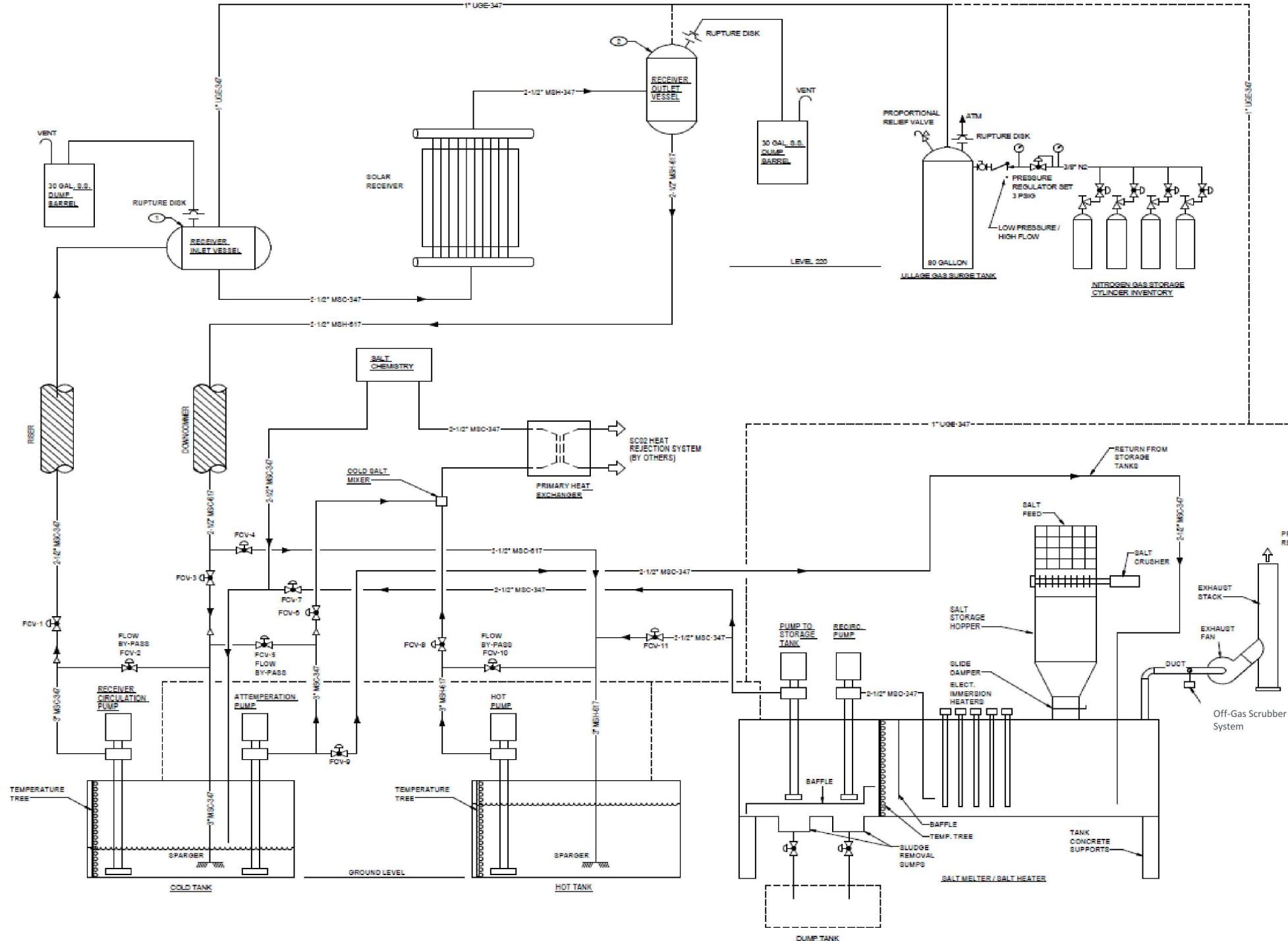


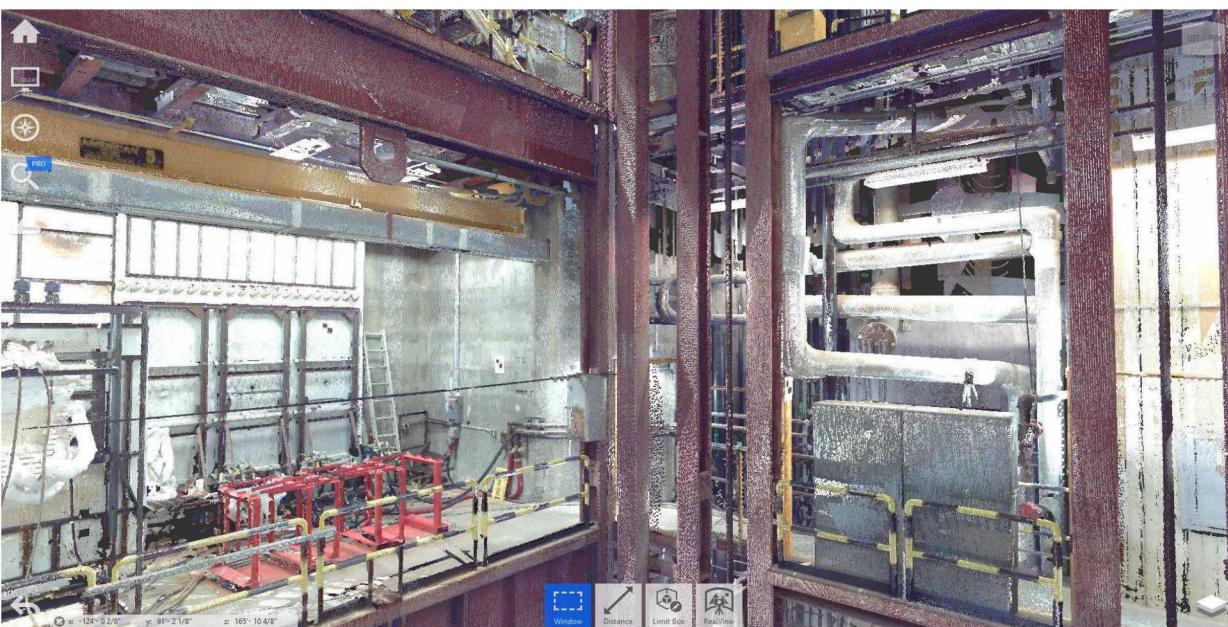
**SolarReserve Crescent Dunes
Molten-salt HTF plant (USA)**

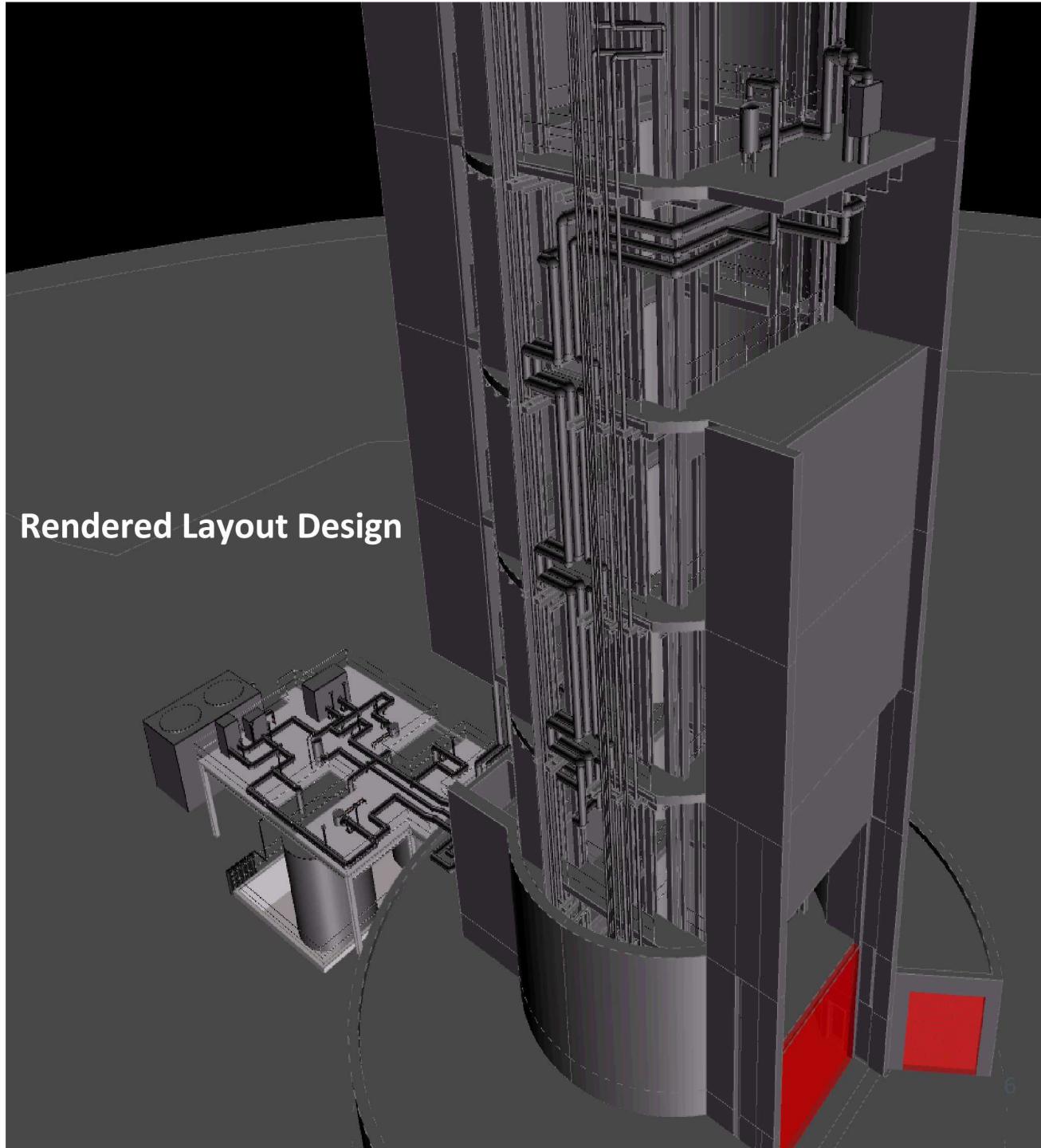
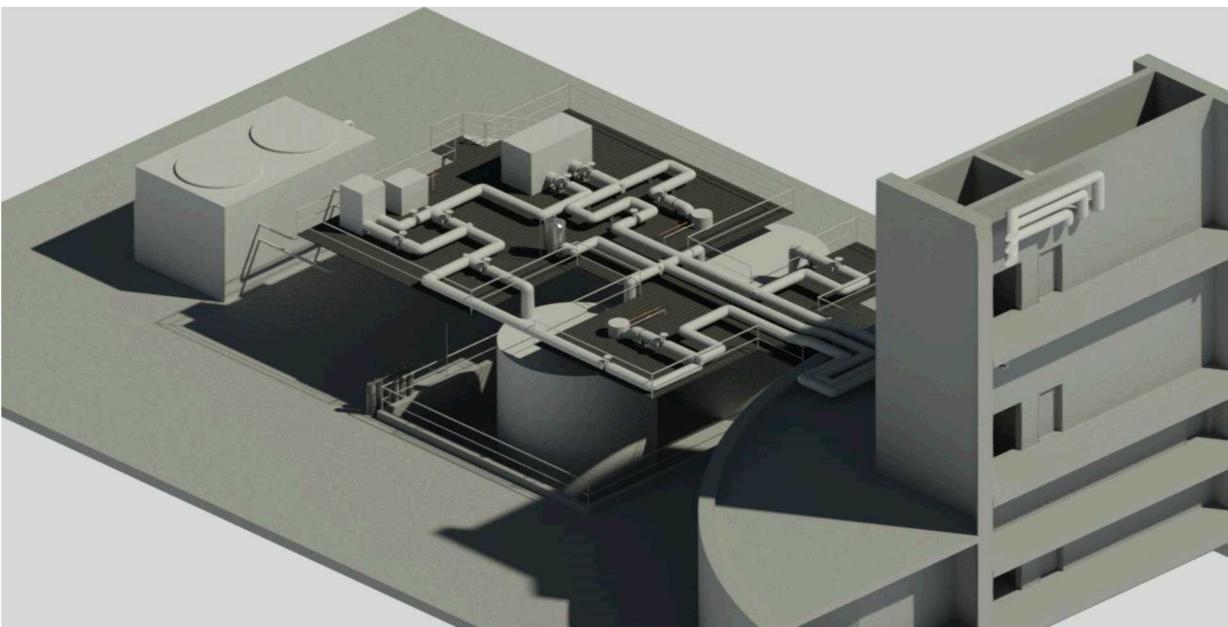
**Vast Solar Jemalong
Sodium-HTF pilot facility (Australia)**

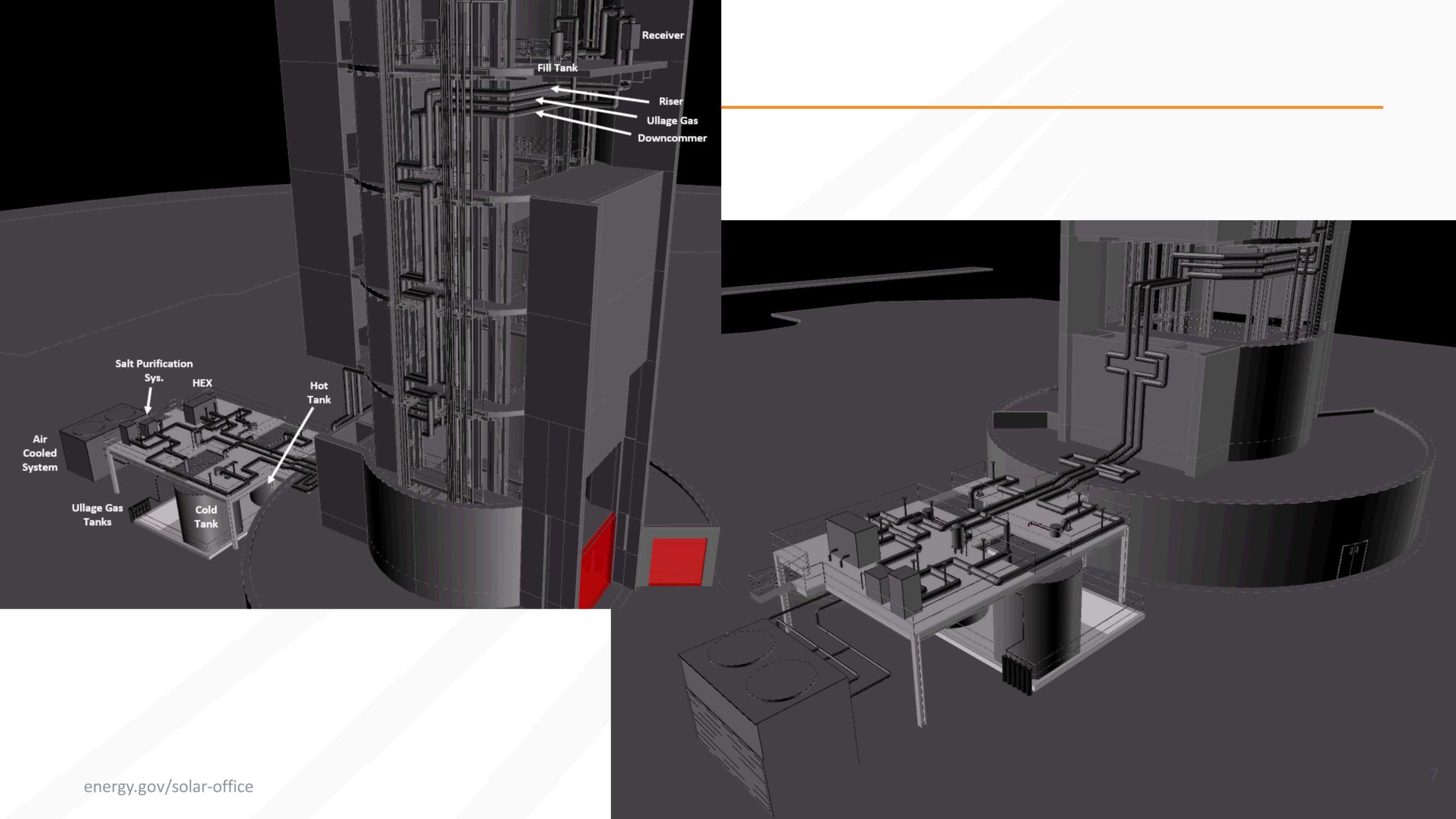
Gen3 Program addresses the Thermal Transport System


Solar Field


Goal:

De-risk high-temp components and develop integrated-system designs with thermal energy storage at $>700\text{ }^{\circ}\text{C}$



Gen 3 Sys. P&ID Layout

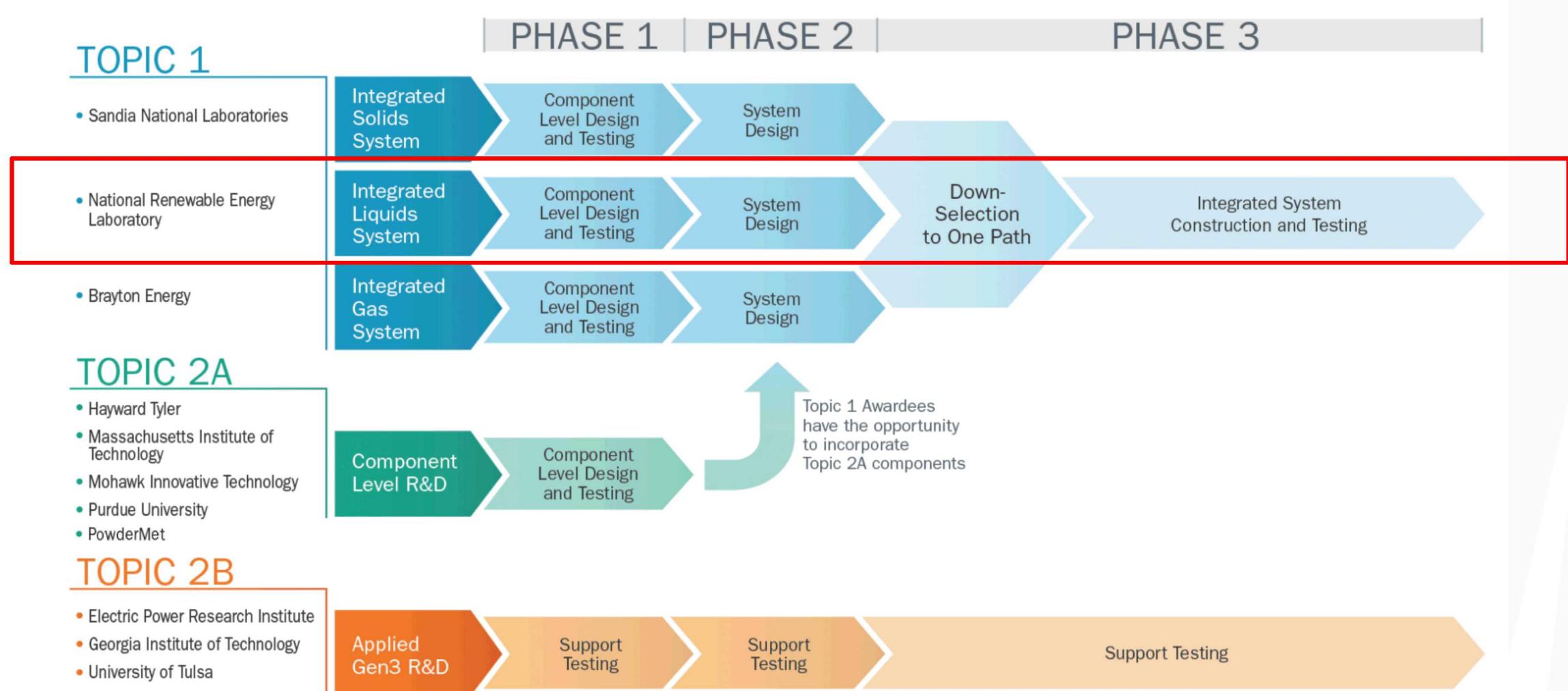

220 ft Point Cloud Tower Level

Rendered Revit 3D Model

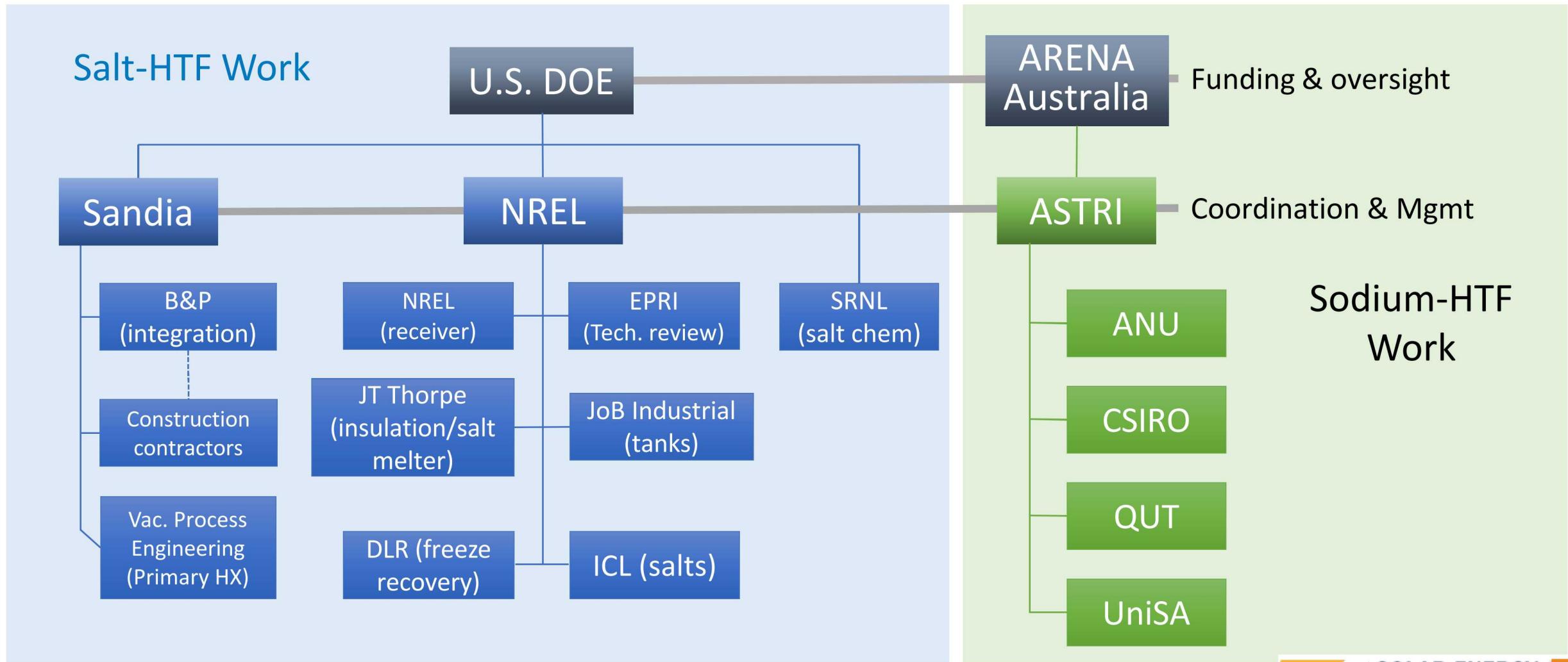
Rendered Layout Design

Gen 3 Topic 1 Overview

2 Introductions of Topic 1 & 2 Teams


3 Technical Milestones & Schedule of Topic 1 Project

4 Molten Salt Pumps Technical Challenges for Topic 1 System


5 Molten Salt Valves Technical Challenges for Topic 1 System

6 Projects Next Steps

DOE CSP Gen3 Program

Introductions – Topic 1 Partners

High-Temperature System Designs – Dan Barth

- Dan Barth & High-Temperature System Designs tasked as Gen 3 Consultant
- HTSD is tasked with supporting development of Gen 3 molten salt pumps and valves for both Topic 1 & 2 teams
- Dan is also responsible for supporting integration of pumps and valves with full-scale Pilot-system, which includes P&ID development with B&P.

Topic 2 Pump & Valve Teams (1-2 Min. Overviews)

Teams

- Massachusetts Institute of Technology and Flowserve: (2 Awards)
 - ~ Ceramic Castable Cement Tanks and Piping for Molten Salt

The development of ceramic castable cements for thermal storage tanks and piping to resist corrosion and penetration by the high temperature chloride salts.

- ~ High-Temperature Pumps and Valves for Molten Salt

This project will develop high-temperature low-cost ceramic-metal composite materials for pump and valve components used in 750 C chloride salts.

- Hayward Tyler and ORNL:
 - ~ Development of High Temperature Molten Salt Pump Technology for Gen 3 Solar Power Tower Systems

Hayward Tyler will seek to improve existing long-shafted pump technology of the radial bearings and sleeves in both materials and designs to provide lower costs and longer life cycles of the hot and cold pumps.

- Powdermet, Sulzer Pumps and University of Madison Wisconsin:
 - ~ High-Toughness Cermets for Molten Salt Pumps

This team will develop a ceramic-metal composite material (Cermet) resistant to the poor lubrication during dry running conditions of the startup and shut down modes of operation, corrosion and erosion caused by the Chloride salts and insolubles.

Topic 2 Pump & Valve Teams

Support:

- Kevin Robb (ORNL) – PI for 300-kWth chloride salt test loop

This project focuses on the design, construction, and operation of a lab-scale test Facility to Alleviate Salt Technology Risks (FASTR). FASTR is a versatile high-temperature molten chloride salt facility designed for temperatures greater than 700 °C and for a variety of testing in support of the Gen3 CSP molten salt pathway. FASTR and the accompanying research will provide the foundational capabilities necessary to support Gen3 CSP awardees.

- Dan Barth (High Temperature System Designs, LLC)

High Temperature System Designs, LLC is a consultant to the Topic 1 team and will share lessons learned from years of experience working with major OEM pump manufacturers, major engineering firms, universities, national labs and private industry on molten salt applications. Reducing RISKS associated with molten salt systems and reducing costs of new designs and technology in order for these technologies to be commercialized will be HTSD, LLC primary objective working with the Topic 2 Teams.

Gen 3 Topic 1 Overview

2 Introductions of Topic 1 & 2 Teams

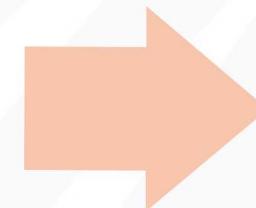
3 Technical Milestones & Schedule of Topic 1 Project

4 Molten Salt Pumps Technical Challenges for Topic 1 System

5 Molten Salt Valves Technical Challenges for Topic 1 System

6 Projects Next Steps

3-Phase Project (Spanning five years)

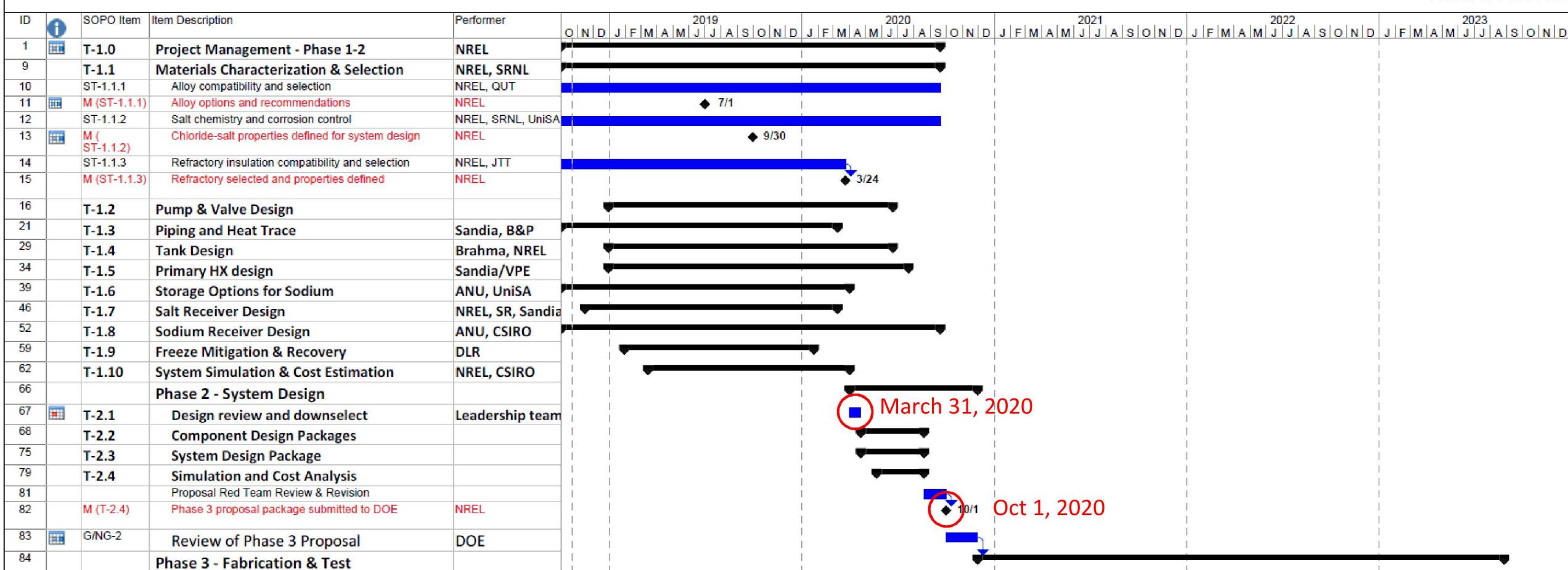

Phase 1

- Validate properties
- Select materials
- Design and test critical components
- Month 1-18

Phase 2

- Select between salt and sodium
- Propose integrated system design
- Month 19-24

DOE review
and
pathway
selection


Phase 3

- Construction
- Test
- Document

Phase Schedule

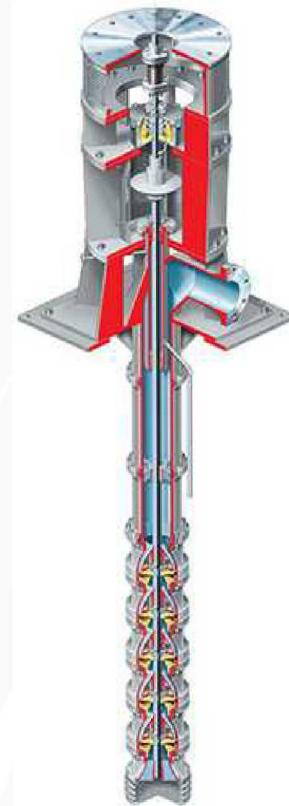
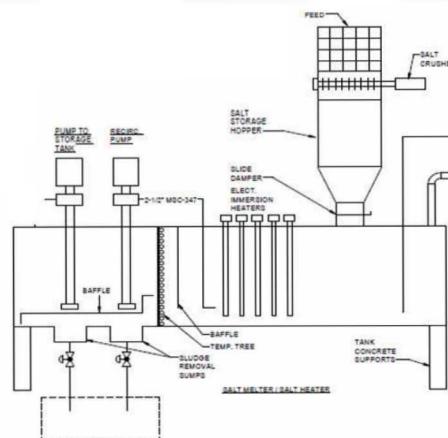
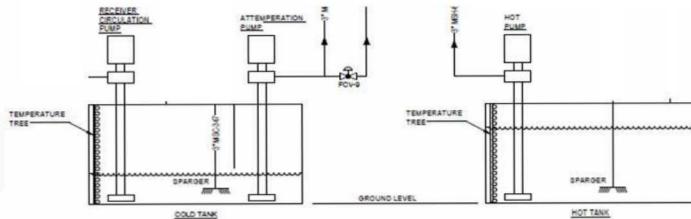
FOA Number: DE-FOA-0001697
 Project Title: Liquid Pathway to SunShot
 Version Date: 5/28/2018

Organization: NREL
 Point of Contact: Craig Turchi
 Email: craig.turchi@nrel.gov
 Phone: 303-384-7565

Gen 3 Topic 1 Overview

2 Introductions of Topic 1 & 2 Teams

3 Technical Milestones & Schedule of Topic 1 Project




4 Molten Salt Pumps Technical Challenges for Topic 1 System

5 Molten Salt Valves Technical Challenges for Topic 1 System

6 Projects Next Steps

Gen 3 System – Pump Technical Challenges

- The Pumps required for the pilot plant will be:
 - Cold Salt Recirculation Pump
 - Hot Steam Generation Pump
 - Attemperation pump
- Overview of Pump Specifications – *See Document*

Traditional Long-Shafted Pump Design, Courtesy of Flowserve

Gen 3 System – Pump Technical Challenges (Dan Barth)

- ❖ Material Selection for wetted components such as Volute, Impeller, Shafting, Column
- ❖ Pump sole plate and tank seal
- ❖ Column attachment to Pump mounting plate and heat shield
- ❖ Capability to reduce Heat dissipation up the shaft assembly to Thrust bearing
- ❖ Capability of Sealing the cover gas from the salt tanks (Possible HCl)
- ❖ Pump sizing because of low flow requirements (If recirculation is req.)
- ❖ Minimum submergence
- ❖ NPSH_r
- ❖ Minimum distance of bottom of tank and from side walls
- ❖ Identifying natural frequencies of pump and mounting structure
- ❖ Must be capable of replacing Thrust Bearing without pulling pump
- ❖ Capability to adjust impeller when pump is hot
- ❖ Capability to monitor thrust bearing temperatures
- ❖ All fasteners below mounting must be locked to prevent loosening during operation
- ❖ Pumps must be capable of 100% self-draining during removal from hot salt
- ❖ Pump must be capable to operate at shut off for short periods if a freeze-up in the system occurs

Pump Technical Challenges (Risk Registry)

Aspect	Failure Mode	Probability (0.0-1.0)	Impact (0-5)	Risk score	Comments and Consequences	Milestone?	Aspect		Failure Mode
							Count	Aspect	
Shaft	Unstable	0.5	4	2.0	Bent shaft, too much wear in radial bearings,	2	Shaft	Unstable	
Tank sparger system	Forces against pump	0.4	5	2.0	Critical	****	Tank sparger system	Forces against pump	
Motor	Overheats	0.3	5	1.5	Locked rotor, loss of bearing clearance, Radial Bearing failure, freeze up in column, pump at Runout con	1	Motor	Overheats	
Motor	Reverse rotation from back flow from system	0.3	5	1.5	Sytsem back flow can cause reverse rotation, restating pump could break shaft	**	Motor	Reverse rotation from back flow from system	
Radial Bearings/	Insufficient lubricity/overheat	0.3	5	1.5	Radial bearing failure	3**	Radial Bearings/	Insufficient lubricity/overheat	
Main mounting plate seals	Leak	0.3	5	1.5	Vertical turbine designs could leak	3**	Main mounting plate seals	Leak	
Main mounting plate/seals	Incompatible with salt/corrosion/ salt buildup	0.3	5	1.5	Seal failure	3**	Main mounting plate/seals	Incompatible with salt/corrosion/ salt buildup	
Bearings/seals	Insufficient strength at operating temperature	0.3	5	1.5	Seal must be protected from heat/ thrust bearing must be protected from migration of heat up shaft	3	Bearings/seals	Insufficient strength at operating temperature	
Flow	Over pressure	0.3	5	1.5	Freeze up in sysystem, major problem in vertical turbine designed pumps for main seal	***	Insolubles in melted salt	High wear in bearings	
Valve heat tracing		0.3	5	1.5	Critical	**	Flow	Over pressure	
Insulation		0.3	5	1.5	Critical	***	Valve heat tracing		
Shaft Harmonic	High Vibration	0.3	4	1.2	High Vibration during startup or shut down, passing through critical speed	***	Insulation		
Shaft Sleeve for Raidal bearing	Incompatible with salt/corrosion	0.3	4	1.2	Surface finish will be damaged causing bearing failures	**	Shaft Harmonic	High Vibration	
Bushings for radial sleeve	Incompatible with salt/corrosion	0.3	4	1.2	Surface finish will be damaged causing bearing failures	**	Shaft Sleeve for Raidal bearing	Incompatible with salt/corrosion	
Shaft Coupling	Incompatible with salt/corrosion	0.3	4	1.2	Between shaft and ID of sleeve	**	Bushings for radial sleeve	Incompatible with salt/corrosion	
Drive and Control System	Insufficient turndown ** time between restarts	0.3	4	1.2	Setup of VFD and fail safes is critical	5	Drive and Control System	Insufficient turndown ** time between restarts	
Monitoring system	Monitor: Vibration, Bearing temps, HP, Prsssure, Level gages	0.3	4	1.2	Critical to know how the pump is running as it is the heart of the system	**	Monitoring system	Monitor: Vibration, Bearing temps, HP, Prsssure,	
Flow Meter	Monitoring system	0.3	4	1.2	Critical to keep receiver cool	**	Flow Meter	Monitoring system	
Motor	Insufficient power	0.2	5	1.0	Damage to motor	***	Flow Meter	Monitoring system	
Impeller/Pumphead/Volute	Incompatible with salt/corrosion	0.3	3	0.9	Material Selected must be designed for high corrosive salts	1	Motor	Insufficient power	
Column assembly	Insufficient strength at operating temperature	0.2	4	0.8	High vibration, binding of rotating assembly	4	Impeller/Pumphead/Volute	Incompatible with salt/corrosion	
Mounting plate	Insufficient strength at operating temperature	0.2	4	0.8	Flexing of mounting causing leaks at discharge flange	**	Column assembly	Insufficient strength at operating temperature	
Fasteners and Gaskets for columns	Insufficient strength at operating temperature	0.2	4	0.8	High vibration loss of head prssure of pump	**	Mounting plate	Insufficient strength at operating temperature	
Isolation Valves	Chemically incompatible w/salt	0.2	4	0.8		**	Fasteners and Gaskets for columns	Insufficient strength at operating temperature	
Isolation Valves	Mechanically Unstable	0.2	4	0.8		***	Isolation Valves	Chemically incompatible w/salt	
Impeller/Pumphead/Volute	Erosion	0.2	3	0.6	If any impurities are left in the salt after melting then the could be major problems with Erosion these p	8	Isolation Valves	Mechanically Unstable	
Head pressure	Insufficient head	0.2	3	0.6	Wrong speed from VFD	8	Isolation Valves	Erosion	
Flow	Insufficient flow	0.2	3	0.6	Blocked lines or valve	4	Impeller/Pumphead/Volute	Erosion	
Shaft	Incompatible with salt/corrosion	0.1	2	0.2	Materials selected must be design for high temperature applications	***	Impeller/volute wear rings	Incompatible with salt/corrosion	
Shaft	Insufficient strength at operating temperature	0.1	2	0.2	Material Selected must be designed for high temperature appplications	6	Head pressure	Incompatible with salt/corrosion	
Impeller/Pumphead/Volute	Insufficient strength at operating temperature	0.1	2	0.2	Materials selected must be design for high temperature applications	7	Flow	Inufficient head	
Motor	Not available			-		2	Shaft	Inufficient flow	
Impeller/volute wear rings	Incompatible with salt/corrosion					2	Shaft	Incompatible with salt/corrosion	
Insolubles in melted salt	High wear in bearings					4	Impeller/Pumphead/Volute	Inufficient strength at operating temperature	
Isolation Valves	Availability					1	Motor	Insufficient strength at operating temperature	
Freeze up in closed valve						8	Isolation Valves	Not available	
								Availability	

Overviews & Research Progress by Topic 2 Teams - Pumps

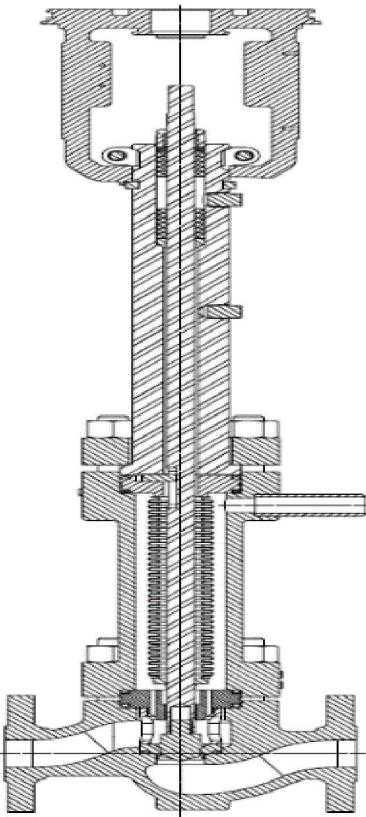
3-5 Min. Presentations

- MIT, Flowserve ~ Dr. Henry Asegun
- Hayward Tyler ~ Keith Oldinski , Jeffry Belotii
- Powdermet and Sulzer Pumps ~ Joseph Hensel, Philippe Dupont
- Kevin Robb (ORNL) – PI for 300-kWth chloride salt test loop

Gen 3 Topic 1 Overview

2 Introductions of Topic 1 & 2 Teams

3 Technical Milestones & Schedule of Topic 1 Project


4 Molten Salt Pumps Technical Challenges for Topic 1 System

5 Molten Salt Valves Technical Challenges for Topic 1 System

6 Projects Next Steps

Gen 3 System – Valve Technical Challenges

- Several Types of Valves are required for test system
- Flow Control Valve (FCV)
- Isolation Valves
- Check Valve
- Technical Challenges
 - Materials corrosion
 - Thermal Mechanical Fatigue
 - Thermal management
 - Bonnet
 - Bellows
 - Valve Stem
 - Packing, gaskets and seals

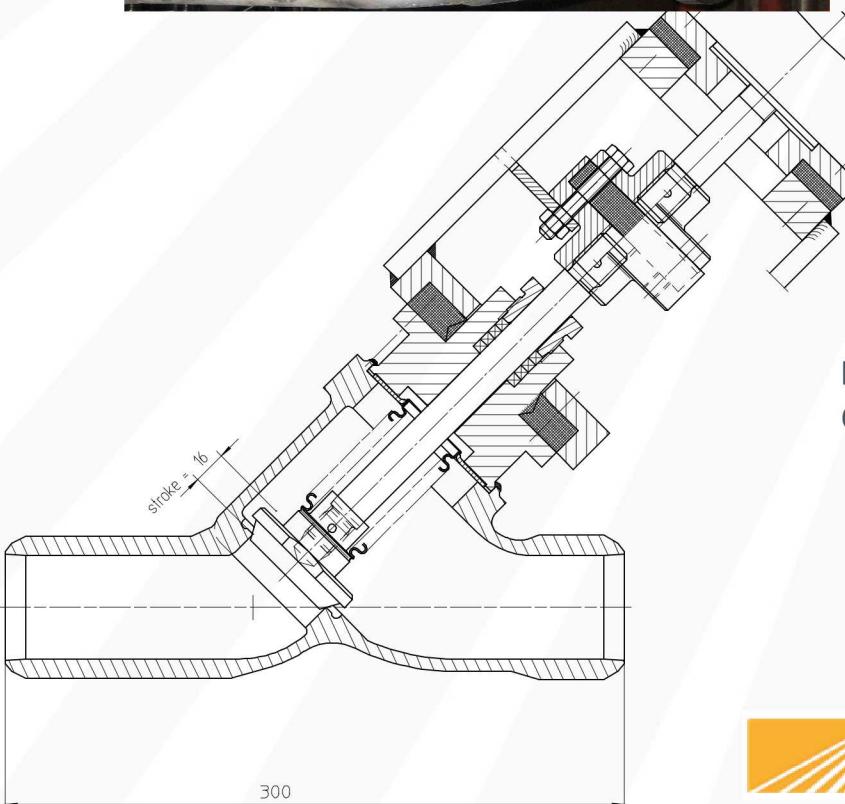
Traditional Valve Design, Courtesy of Flowserve

Gen 3 System – Valve Technical Challenges (Dan Barth)

FEATURES & MODIFICATIONS

BODY:

- material: TBD
- all body connections welded
- upstream body extended to prevent thermal deformation of seat area during installation



PLUG:

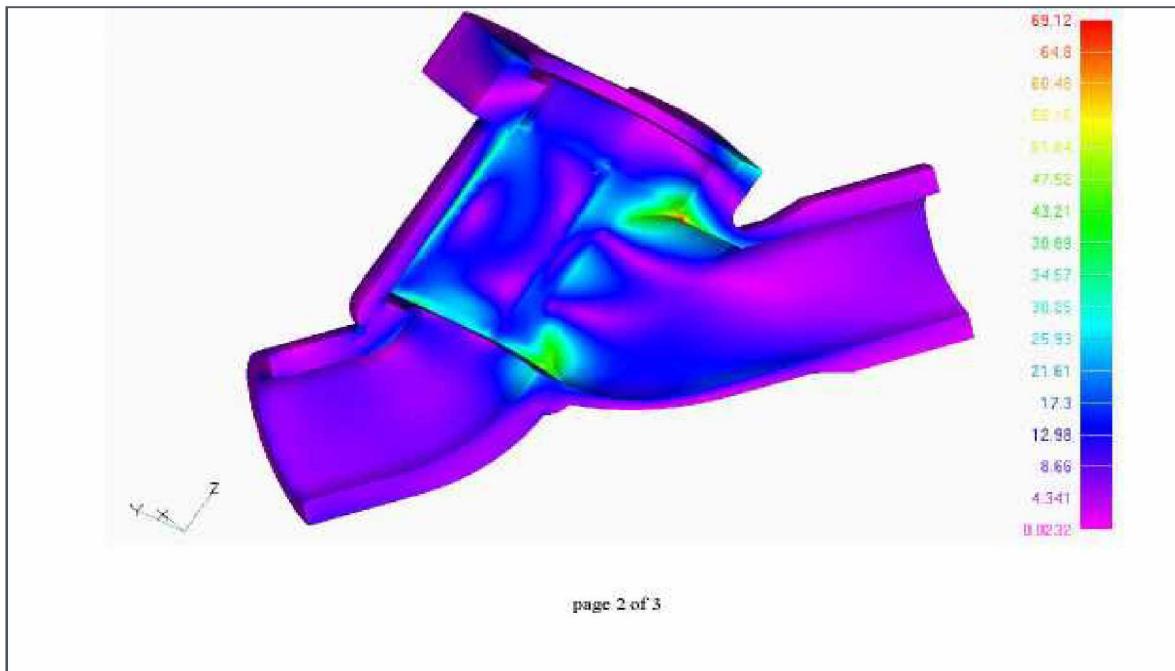
- material: TBD
- corresponding thermal exp. factor to bellows and hardness (240HB)

BELLOWS:

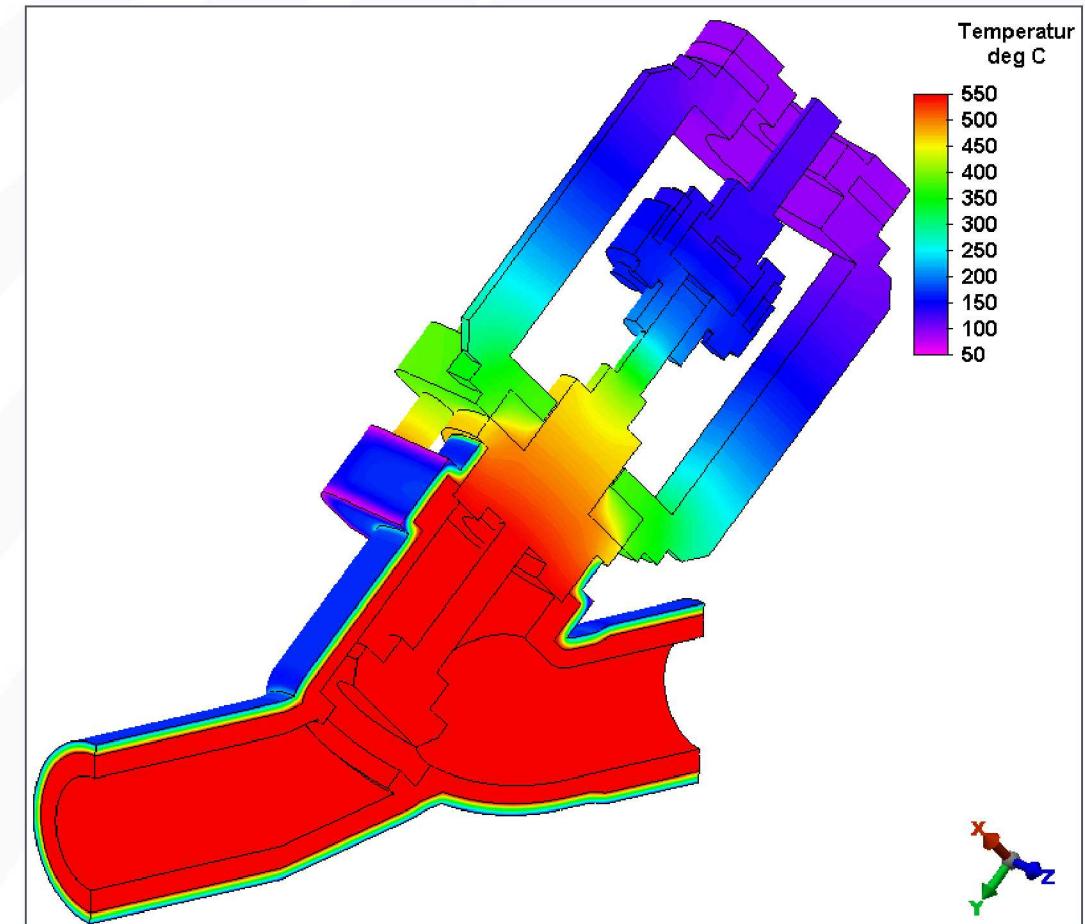
- Material: TBD
- pressure rating TBD
- weld-assembly of plug, bellows and base-plate carried out by manufacturer
- pressure testing of completed assembly carried out by manufacturer

Molten salt Valve Design,
Courtesy of Fiatec Valves

STEM:


- Material : TBD
- double sealed by bellows and stuffing box

ACTUATOR AND SPINDLE:


thermally decoupled from valve body/stem
by high-strength insulating board
PROMAT MONOLUX 800
(classific. Temp. 800°C)

Gen 3 System – Valve Technical Challenges (Dan Barth)

3D-Model & FE-Analysis

THERMAL CALCULATION

Gen 3 System – Valve Technical Challenges

Courtesy of Flowserve

Valve Specifications

- Example of Valves Specs Sheet on Right
- Valves needed per P&ID are Flow Control Valves
 - Typically Globe/Gate Valves, not Ball Valves
- Specific Valve Components Requiring R&D:
 - Bellows
 - Packing
 - Gaskets and Seals
 - Bonnet
 - Valve Stem
 - Thermal Management

Example:

PROJECT DATA	1	Tag Number	Rev.	3WSH10AA091	0				
	2	Service				SALTS TO HOT TANK			
	3	Location	P&ID	3WSH10BR101		AND1-SRPP-DG-0001			
	4	Pipe	Size	Schedule	Insulation	C3D 12" Sch 20	YES		
OPERATING CONDITIONS	5	Fluid	State	NITRATE SALTS		LIQUID			
	6	Inlet Pressure	Max.	Norm.	Min.	2.29 barg	---		
	7	Outlet Pressure	Max.	Norm.	Min.	0 barg	0 barg		
	8	Temperature	Max.	Norm.	Min.	386°C	386°C		
	9	Flow rate	Max.	Norm.	Min.	1491173 kg/h	322920 kg/h		
	10	Pressure Drop	Max.	Norm.	Min.	2.29 bar	3.53 bar		
	11	Viscosity Oper. Conditions	Vapor Pressure	1.8 cP		---			
	12	Air Fall Position	Critical Pressure	CLOSE		---			
	13	Cp / Cv	Molecular Weight	---		---			
	14	Compressibility Factor	Density	---		1737 kg/m3			
	15	Cv required	Cv min allowed	Cv Valve	Note 1	Note 1	Note 1		
	16	Rangeability	Admissible Noise	Note 1		< 85 dBA			
	17	Available Air Pressure	Design Pressure	7 barg		20.3 barg			
	18	Max Differential Pressure	Design Temperature	13.7 barg		400°C			
	19	Type	Material	GLOBE		ASTM A-216 WCC			
	20	Size	Port	Rating	Max. Temp.	Note 1 FULL 3 0 0 #	---		
	21	Connections	Size	Pressure	Finish	BW(Note 2) 12"	---		
	22	Cooling fins		Belows		NO			
	23	Bonnet Type				EXTENDED			
TRIM	24	Valve Plug Material	Type	STELLITE		Note 1			
	25	Seat Type	Material	Seat leak class	Note 1	STELLITE	CLASS IV		
	26	Cage	Material		Note 1	Note 1			
	27	Type of Packing	Material		Note 1	GARLOCK PBI			
	28	Flow Action to	Characteristic		OPEN	LINEAR			
ACTUATOR	29	Trim Size			Note 1				
	30	Type	Size	SPRING AND DIAPHRAGM		Note 1			
	31	Operating Fluid	Fail Position	AIR		CLOSE			
	32	Mechanical Travel Limit	Travel	---		---			
	33	Pneumatic Connections		1/4" NPT-H					
POSITIONER	34	Handwheel		YES					
	35	Type		ELECTRO-PNEUMATIC					
	36	Input Signal	Output Signal	4-20 mA (HART)		Note 1			
	37	Power Supply		24 V dc					
	38	Electrical Connections	Pneumatic Connections	1/2" N PT-H		1/4" N PT-H			
ACCESSORIES & REQUIREMENTS	39								
	40	Protection grade	Electric classification	Certified by	IP 65	—	—		
	41	Regulating Filter	Manometers	YES		YES			
	42	Indication of Local Position		YES					
	43	Solenoid Valve	Power Supply	ASCO	230Vca				
MANUFACTURER	44	Limit Switches	Type	2 (Open / Close)		DPDT (2 A, 24 V dc)			
	45	Manufacturer		Note 1					
	46	Model		Note 1					
	47	Series N°		Note 1					
	48	S u p p l i e r		Note 1					
NOTES:	49								
	50								
	1	1- To be filled out by Manufacturer							
	2	SPOOL EXTENDED 100 mm OF A 106 Gr.C (ST) S/ANSI B 36.10 SIZE AND SCH ACCORDING TO PIPE							
	3								
					WRITTEN	M.B.	27-07-06	UNIT	THERMAL STORAGE
0	Invitation to Tender	27-07-06	M.B.	ES	CHECKED	ES	27-07-06	PROJECT	Andasol-1 (P227295)
REVISION	DESCRIPTION	DATE	WRITTEN	APPROVED	APPROVED	JIL	27-07-06		
TITLE: DATA SHEETS									
PNEUMATIC VALVES									
RQ N°					REV. 0			SHEET:1 OF 12	REV. 0

Overviews & Research Progress by Topic 2 Teams - Valves

- Massachusetts Institute of Technology
Based on their use of low-cost novel refractory materials and processes to form these materials into the complex shapes needed to form pump and valve components, they will help ensure long life in these critical pieces of equipment in the molten salt loop.
- Further need for assistance?
The valves in a molten salt system are one of the most critical pieces of equipment in the loop. The pump is the heart of the system but without the valves, we cannot operate the system efficiently. Controlling the molten salt flow during startup, daily operations and shut down will all be effected by the valves in the system.

Gen 3 Topic 1 Overview

2 Introductions of Topic 1 & 2 Teams

3 Technical Milestones & Schedule of Topic 1 Project

4 Molten Salt Pumps Technical Challenges for Topic 1 System

5 Molten Salt Valves Technical Challenges for Topic 1 System

6 Projects Next Steps

Work Going Forward

- Topic 1&2 standing monthly meetings to touch base on R&D progress
 - Topic 1 information pass downs pertaining to:
 - Materials selections
 - P&ID System Development
 - Salt Chemistry selections and alloy/welding research updates
 - Integration discussions
 - Topic 2 Research progress
 - Milestone updates
 - Updated results
 - Technical, administrative or schedule challenges

Acknowledgements

- Craig Turchi (National Renewable Energy Labs) - craig.turchi@nrel.gov, 303-384-7565
- Ken Armijo (Sandia National Labs) – kmarmij@sandia.gov, 505-284-3425

Questions?

**SOLAR ENERGY
TECHNOLOGIES OFFICE**
U.S. Department Of Energy

Extra Slides

EES System Model

Diagram Window Solutions

Solution Controls

solutionMode\$= implicit

use **ctrl+g** to update guess values

Cold Tank

Vol_{cold,gpm} = 110 [gpm]

PressureRise_{coldPump} = 159.8 [psi] PressureRise_{hotPump} = 45.08 [psi]

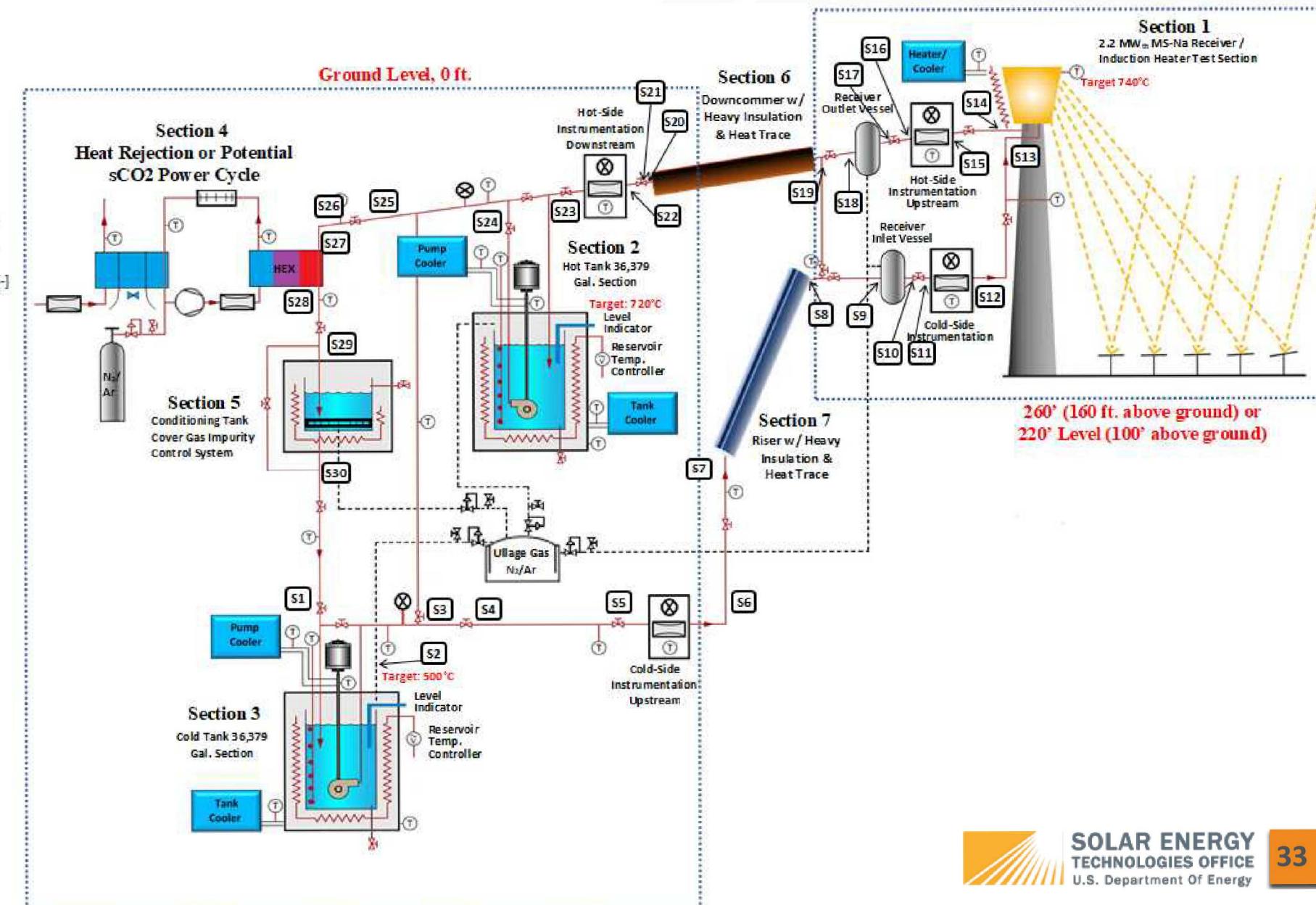
C_{v,cpv} = 80 [-]

TDH_{cold,required,ft} = 296.5 [ft]

T_{hot,0,C} = 720 [C]

Heat Exchanger

PressureDrop_{hxer} = 30 [psi]


q_{hxer} = 1000000 [W]

Parametric Studies

Study - System Curve

unset Vol_{cold,gpm}; Vol_{hot,gpm}

unsetVariables\$= None

Task 1.3: Piping, Heat Trace & System Layout

- Team reviewed three possible pipe pre-heating systems and had discussions with multiple manufacturers on system limitations and possibilities of manufacturers developing higher-temperature rated systems.
- MI cable is capable of pre-heating the pipe to 450°C however the cable has a maximum temperature exposure of 590°C.
- Impedance heating system is capable for preheating pipe to 450°C and can be exposed to temperatures exceeding 750°C.
 - Valves and flowmeters must be completely isolated from the electrically energized piping; otherwise valves and flowmeters will not function.
 - Isolation requires flanged connections on valve and flowmeters with an electrical insulator between the flanges and flange bolts.
 - However, flanged fittings are not possible due to salt wicking effects.