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• Introduction

— AIGaN alloys for power electronics and laser diodes

• "Quasi-vertical" (A10.3Ga0.7N) PN diodes on sapphire

— Continuously grown diodes

— Diodes with regrown p-anode

• Vertically conducting (A10.3Ga0.7N) PIN diodes

— Growth on patterned n-GaN substrates

• "Quasi-vertical" (A10.7Ga0.3N) PN Diodes on sapphire

— Continuously grown diodes with different approaches to forming p-anode

• Summary
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AIGaN alloys for Deep Ultraviolet Light Emitters and Detectors
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Ultra-wide-bandgap semiconductors (UWBS, >4eV)
for power electronics

Sandia
Natianal
Laboratories

Critical Electric Field (MV/cm)
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- - - Hudgins, 2003
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1-Armstrong, EL 2016, 2-Allerman, EL 2016, 3-Nisikawa, Jpn. JAP 2007



Why wide-bandgap semiconductors for power electronics?

Unipolar Figure of Merit (vertical devices) 
•••

TT 
Vbr2 1 .11 3UFOM = = -EµEc OC
Ron,sp 4 •

0

Ron, spc vs. Vbr

Si

4H SiC

GaN

A ;‘, 

100 0
B akdo volta e (V)

g I
♦

-10x lower R.,
w/ GaN

-10x lower R.„
w/ A107Ga0 3 N

0 0

Si, SiC Power Transistors 

111.1
•

Vdrop:

Ploss:

n- (Drift) 3300V, 50A
MOSFET

In- (Drift) E

S Ca

250V 1.2V

12 500W 60W

[ 

WBS devices:

* Lower ohmic loss
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Challenges for a AIGaN-based switching transistor

* Double-well Metal-Insulator-Semiconductor
Field-Effect-Transistor (D-MISFET)

Gate Dielectric

Source
n+

p-AlGaN

11
n- AIGaN (drift layer)

.....:4::?::::::::::::::::::::.................................................
.........V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.VP.V.V.V.V.V.V.V.V.V.V.V.V.'

(substrate

a

Reverse bias PN junction key to multi-
kilovolt blocking voltage (Vbr)

* Must have low reverse leakage current

• P-layers formed by ion implantation and
annealing for Si and SiC devices

* Form the p-well by selective-area-growth
(SAG) of p-AIGaN

Vertically conducting device geometry

* No AIGaN substrate for vertical conduction (HVPE?)

• Substrate removal possible alternative

* Develop growth of AlGaN on patterned n-GaN substrates
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A10.3Ga0.7N "Quasi-Vertical" PN diode on sapphire

1. Continuously grown Quasi-Vertical diode structure and processing

S N„

Grade to p-GaN

p- A10.3GamN (0.4 µm)

NNW
MloiAu

AIN

1.3mm sapphire

Quasi-Vertical PN diode structure

• Implanted junction edge termination

• p-A10.3Ga0.7N: 1025 °C, 6-10 Q-cm, 0.4 vim

[Mg] = 2-4e19 cm-3

• Drift Layer: 4.3, 5.5, 7.5, 9, 11 and 15.5 ,um

• Total epi thickness: 7 — 18, 22 vtm

• Crack-free (except 15.5 vtm drift layer)

• Drift layer doping: mid 1016 cm-3

Mobility: 150 cm2/Vs

• Threading dislocation density: 1-3 x 109 cm-2
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A10.3Ga0.7N "Quasi-Vertical" PN diode drift layer thickness

1 0.0-
•

-2.0E-7-

47:- -4.0E-7-
-1E'
a)
= -6.0E-7-
o

-8.0E-7-

Reverse IV Characteristics

-1.0E-6 r

11µm

9µm

i
-3000 -2500

No -0.8-3x1016 cm-3
<

7.5µ

5.5µm

Drift layer
Thickness

4-1
c
CI) 1
s-
L-
=
0

14.3µm

1i i i i
-2000 -1500 -1000 -500 0

Forward lV Characteristics

x10-3

5.5 um

7.5 um

9 um

11 um

Ron,sp > 10-20 mn-cm2

5 10 15

Voltage (V) Forward Voltage [V]

[* VRev — 3000V @ 1µA

* Ec — 5.9 MV/cm

* Kilovolt class diodes  i
20

4 Ron,sp is high due to QV device geometry

4 Develop vertically conducting devices
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Breakdown voltages reported for lll-Nitride PN diodes

GaN diode

(vertical)

AIGaN d

(Quasi-v

P-contact

P-GaN

n- GaN
(Drift region)

N+ GaN Substrate

N-contact

P Contact

p-30%AIGaN

n-30%AIGaN
(Drift )

N+ 30%AlGaN (Contact)

Sapphire

lll-N PN diodes with > 3 kV breakdown voltage

Breakdown
(kV)

No (cm-3)
Drift
(um) Material Group Ref

4.7 / 5.0 2/9/16e15 33 GaN Hosei Univ.
EDL-2015 / Jpn J
Appl. Phys.-2018

4.0 2-5e15 40 GaN Avogy EDL 36p1073 2015

3.9 3e15 30 GaN Sandia EL 520170_2016

3.7 5e15 >30 GaN Avogy EDL 35p247 2014

3.48 1/3/12e15 32 GaN Hosei Univ. IEDM15-237 2015

>3 0.8-3e16 11 30%-AIGaN Sandia EL 52p1319_2016

3.0 0.8-3e16 9 30%-AIGaN Sandia EL 52p1319_2016

3.0 1/10e15 20 GaN Hitachi
Jpn J Appl Phys 52
p028007 2013

Advantages of wide-bandgap 111-Nitride 

GaN A10.3Ga0.7N

N. (cm-3) low e15 low e16
IN Larger E, (larger Eg)

Drift (µm) 20-30 -10

TDD (cm-2) 5 1e6 low 1e9 IN Higher reverse leakage
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A10.3Ga0.7N PN Diode: Regrowth on !CP etched drift layer

Test p-AIGaN regrowth on 1CP etched  drift layer

A. "As-grown" Drift 

contact

p-AlGaN

n- AlGaN

drift layer

n+ AlGar7.111.111.

• No ICP etch of drift layer

• Repeat previous regrown
diode

B. ICP-etch ONLY

cont

p-AlGaN

n- AIGaN

drift layer
contact

•:••••••.4▪ .:

=10_+ AIGaN

Al

—iwrmurir

• No attempt to remove

C. ICP-etch + Thermal

contact

p-AlGaN

n- AIGaN

drift layer

=P—n+ AIGaN
!

• Warm to 1020C and pause
damage from ICP etch for 10 min. before p-AIGaN
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A10.3Ga0.7N PN Diode: Regrowth on !CP etched drift layer

PN Diode IV Characteristics on an ICP-etched drift layer

Reverse IV Characteristics
1.0E 6

1.0E-7

1.0E-10

1.0E-11

-1600

.

Vrevs. > 1000 V

Lk

‘1 114111/4
nA,,

Illifiria(iiiii

q,(,`L •t„ ,

i

_

ii

-1300 -1000 -700 -400

Voltage (V)

-1 0 0

11.0E'

1LOE

1 LOE

1 LOE

Regrown junction

ICP etch only

ICP + Thermal

• Regrowth with thermal treatment reached

Vrevs. 1500V (@ 1µA)

• Regrowth on "as-grown" diode repeated

• ICP-etched reached Vrevs. ̂ -'1000V (@ 1 µA)

Forward IV Characteristics
Wl

i

)

I l I I I l II

nA

1

1,
2 4.

VbitagP
12

• VGI y IUVV 101 Wal U UUI !WM leclKclyU II lUIUCILGb

a good PN junction (TDD = low 109 cm-2)

Regrowth of p-AIGaN on ICP-etched AlGaN yields

kilo-volt class PN diodes with low leakage!
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Continuously grown vs. lCP etched and regrown diodes

• PN Diode IV Characteristics

1.0E 6

8.0E 7

4,7c.

c 6.0E-7

Cl)

(...) 4.0E 7

2.0E 7

D.0E+0

Reverse IV

— Continuously Grown Diode
(Elec. Letters, 2016)

— ICP + Thermal (Best)

l'Srtg"11•-

[Vbr- 1627 1/

Vbr - 1516 V

1.0E 6

1.0E-7

1.0E-8

1.0E-10

1.0E-11 I I

Reverse IV

3 nA (noise floor)

(1!)11111111114i11111
-1700 -1400 -1100 -800 -500 -200

4700 -1400 -1100 -800 -500 -200 1.0E-2

Voltage (V) 1.0E-4

4:(

C 1.0E-6

NI Thermal treatment of ICP-etched drift region can C..) 1.0E 8[
produce AIGaN PN diodes equal to continuously
grown diodes (c-plane)

1.0E 10

1.0E 12

Voltage (V)

0

Forward IV

10

Voltage (V)



Substrates and AIGaN alloys for vertically conducting
laser diodes and power devices

610

)

1 )

j 11 j 11 11 1l

1111-1
TA tension

JiltlitiNNIE11111 r 
310 111

&pi / Lattite
Oanstant

4

AIN

idomorphic limit (Hexatech)

laxation by dislocation generation)

iary (AIGaN) "substrate" needed for devices
iiring microns thick layers (HVPE?)

s tensile strain
to cracking

(Ammono)
GaN

ite a low dislocation template
ices?



Sandia's AIGaN overgrowth of patterned templates

AIGaN Growth on Patterned Templates 
Allerman et. al., JCG 2014

AIGaN with reduced dislocations

AIGaN

t _ _ _ 1
,r--11 • ===, -1 1 r -
-- 1.. - 1, - - -

AlGaN

1.3 mm thick sapphire

Cathodoluminescence 

Trenches formed by etching

Mesa is 385nm at top!

I

<1-1 OO>AIGaN

• 

Sub-micron features are key for
uniform reduction of dislocations  J

10-20X reduction

KV 4.2 rIA Ct PCs 1 12k kin PAN CL

10-15x reduction

4— 111

Trench
Alignment
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AIGaN Laser Diode
P-GaN Contact

Alo.32Gao.68N1.1g

p-Cladding

EBL

GaN-AIGaN MOW

A10,32Ga0,68N:Si

n-Cladding

A10.32Ga0.68N:Si

Thick (1.3rum)Sapphire

Below Threshold
Electroluminescenc

Room temperature Pulsed Current Lasing

9000

6000

>••

G.)
'E. 3000

150 ns, 10 kHz

Ridge: 4 pm

Cavity: 1 mm

325 335 345 355 365 375

Wavelength (nm)

Record Short Wavelength AIGaN QW Laser Diode (Hamamatsu)

p-GaN CTL

p-A10 3Gao 7N CLL

p-AIGaN EBL

GDL

Buffer layer

Sapphire substrate

This work

336 nm
UV-All LD

Alo 16Gao 84N

Alo 06Gao 94N

AIo -16Gao 84N

Alo 18Gao 84N

Yoshida et al.,
Appl. Phys Lett. 2008

11

336.0 nm

Pulse width. 10 ns
Pulse frequency, 5 kHz
Room temperature

x 1 j  530 mA

x 20 „7""--s•-....., 300 mA 

x 200 50  mA

330 335 340 345 350
Wavelength (nm)

• Ridge Waveguide

• 4 x 1 mm

• Jth-22kA/cm2

Crawford et al., Appl. Phys Expr. 2015

• Dramatic improvement in below-
threshold electroluminescence with

10x reduction in TDD

• Patterned over-growth approaches
have enabled the shortest
wavelength AIGaN ridge waveguide
lasers to date
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Vertical A10.3Ga0.7N PN diode on a conducting GaN substrate

STEM - Vertical PN in 30%AIGaN

• Large variation in Al composition during film coalescence

• Composition is uniform once coalescence is complete

TEM

P-GaN (- 0.4 µm) t

N- Drift layer (- 6
No= 2-4 x 1016 cm-

30%AlGaN overgrowth

'1, 11111



30%AIGaN overgrowth of patterned GaN

6.2 µm — 30%AIGaN

N. = 2 x 1018 cm-3 ,i''41
,

30%AIGaN overgrowth on patterned GaN

• N-type doping during overgrowth

- No to 2 x 1018 cm-3

• Xal 0.18 — 0.32 similar morphology

• Planar surface up to Xal = 0.45

• More step bunching on GaN
(conditions and wafer miscut)

30%AIGaN on patterned GaN

Overgrowth: 6.2 µrn

Pattern: 0.67 (1x1)

AFM \
2x2
RMS: 0.11 nm

AFM
10x10
RMS: 1.9 nm

Optical DIC (50x)

25 pm

30%AIGaN on patterned AlGaN/sapphire

Overgrowth: 6

Pattern: 0.56 µm, (1x1)

AFM
3x3
RMS: 0.17 nm

G

AFM
10x10
RMS: 1.2 nm

Oo z MON&



30%AIGaN overgrowth of patterned GaN

AIGaN on patterned GaN

Overgrowth: 8.3 1,trn

Pattern: 1.3 In, (1x1)

Optical DIC (50x)

6.2 !_tm — 30%AIGaN

350nm QW

..e.

25 tim 

• 
AIGaN on patterned AlGaN/sapphirerV 4; so. * 4.7 441 111,

• Itat 41P

* * 
 • 

eilla •

• 1

Overgrowth: 7 µ,rn

Pattern: 0.66 µm, (1x1) •
. 1110
• 'lb 11,
.

TTD = 2-5 x 108 cm-2 tr4e, 4".
lb%

* Similar to sapphire •

,2 Pm tw
• WE

44 all.

•

1157ffieli • •••
kt • 1. Li'•

.1"41- .
hi • **.i.i1 •• t 1,, ••

a silly • I •

le: a iOti7. 4 ♦*.. .
.01.• gb: •
4 • t

4
.

' • p T 4,4 ."•.;1:-.14 .!.c.%.1( •
r

-11

411A.,•141:

A: -t1 A

lArit
• • tv-.• • 4e0j. ›,1
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Vertical PN in 30%AIGaN

p-contact

p-30%AlGaN

n-30%AlGaN
(d rift)

n-30%AlGaN
(overgrowth)

n-GaN substrate

n-contact

Pattern: lx1
Etch depth: 1.1 µ,rn

• 30%AIGaN pn diode grown

on a N-GaN substrate

• 30%AIGaN overgrowth:

Thickness: 6.2 vtm

No: 8 x 1017 cm-3

• Drift region:

Thickness: 5.3 vtm

No: 2-4 x 1016 cm-3

Total epi: 11.8 vim

Rsp-on 1 mO-cm2

Optical DIC (50x)

Reverse IV Characteristics
1E-6

1.0E-06

8.0E-07

"E' 6.0E-07
a)

° 4.0E-07-

2.0E-07-

VNAfifi07A 13.12.1350um

- 650-680 Volts

jog

E-7

1E-10

0.0E+00 , 1 I I i  1E-11
-800 -700 -600 -500 -400 -300 -200 -100 0

Voltage (V)

19



Examples of Al-rich AIGaN PIN and Schottky diodes

AlxGai,N Vertical PN diode (0 < Xal < 0.57) 
Nishikawa, Jpn J. App. Phys. 2007

• Drift Layer: — 0.2 Jim

No — 2x1016 cm-3

• Ron,sp = 1.45 mn-cm2 (Xa,

Reverse IV
0.01

-0.01

-o
▪ -0 02

(,) -0 03

i-Al Ga Nx 1-x
46% 34%

•

57% 52%

-

•

• 29°/ 0%

-200 -150 -100 -50

Reverse voltage (V)
0

Vrevs < 200V

Drift region

Conducting
SIC substrate

Pd/Au
11111111ENIMI11111111

p-GaN

n-Al Gap. N buffer

n-SiC substrate
11111111WIMIIMMIlL111111[111111R11111111101

Ti/Au

Forward IV
1200

1000

i-Al Gax 1-x
0E

0% 29%,
800 34%

(i) 600

a)
-0

4E.
400

200

0

46% 52%

(a)

57 0,0

10 20 30 40 50

Forward voltage (V)

• VfiNd ~ 30V (Xal = 0.57)

A10.8Ga0.2N Schottky diode 

Schottky

Drift layer

80%AIGaN

P. Chow & Hexatech
— ICNS, 2017

No p-layer

Ohmic

n-AIGaN (2 um, 1e19 cm-3)

AIN Substrate

• Si becomes a Dx center
for Xal > —0.85

• Drift Layer: 5

No — 5x1017 cm-3

• Ron,sp = 125 - 350 mf2-cm2

• Breakdown: 5000V

Ecrit 1 0 MV/cm



Compensation of Si doped drift region (70%-AIGaN)

Electron concentration (CIO
vs. SiH4 flow (70%AlGaN)

-,
i

- 1060°C.
1
1 ►

t

1030°C
t

"

[F

▪ Compensation is lower at 1060C
▪ TDD, NH3, pressure ALL affect

compensation

Nomarski DIC (50x) of 70%-AIGaN

Surface morphology depends on
growth temperature (and AIN)
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1050

Growth temperature & compensation
in Si-doped 80%AIGaN

Electron concentration
in Si-70%AIGaN

Si Doped Alo 7Gac, 3N vs. Growth Temperature

c'?

E

2.1E+18

*1060°C

0 1.6E+18

1120°C
w
C.)

1.1E+18 A
•

0

0 6.0E+17

17.)
CD •
LTJ

1.0E+17

1160°C

1100 1150

Growth Temperature (C)

Armstrong JAP 117 (2015)

T = 1060 °C

WEc

Deep level traps in Si-70%AIGaN

T = 1160 °C
1060 °C "

Nt (cm-3) IN_

Ec - 2.38 eV 2.4 x 1016 1 x 1016

[ 1E,- 3.39 eV 3.6 x 1016 5.1 x 1017

E,- 4.74 eV 1.0 x 1017 6.6 x 1017

VIII-related

Ev C- or Mg-related

(2x TMGa flow used for HT growth)

r
* Si dopant compensation strongly depends on growth temperature

* Lowering Tg may inhibit the strong thermodynamic drive to form

compensating point defects in UWBGs like Al-rich AIGaN
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Compensation of Si doped drift region (70%-AIGaN)
S
i
 c
o
n
c
e
n
t
r
a
t
i
o
n
 (
S
 

Si & electron concentration (CIO
vs. SiH4 flow (70%AIGaN)

4.E*116

[Si ] ~ N 
L.7,

0 i i
-.

ili
•

•••

1 •
i •m
I /•

1
I
i

i
•I/

.• 1
1

• . •1

:

I

,

N
A
.,/ ■ PIN

A Cal

E =five SiF

Donor compensation - 1e16 cm-3

Similar to GaN!

Calculated  Vbr (MO for N. & thickness

(70%AIGaN)

13   Drift Layer Thickness
+ 4.3 um

+ 5.5 urn

7.5um

9   +9uni

+11 um

5

3 --GaN

Ecrit 0 MV/cm

1.E+15 11.E4116 iLE-0117

(c 3)

▪ No 1e16 cm-3 for -10 kV

▪ Si doping is above the level of
compensation
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Thermal ionization is not effective for holes for AlGaN (Xai > 0.5)

Polarization induced
P-type doping (Mg)

Grade Al
Composition

Mg-doped Short-period
Superlattice

PdiAu
P-GaN

- (Mg) AIN/AlGaN
- superlattice

Polarization doped PN diode

p-contact

p-70-0% Grade

n-70%AlGaN
(drift)

n-contact

N+ 70%AIGaN (- 2 pm)

AIN (4.5 pm)

Sapphire

"Quasi-vertical" PIN diode

Heterojunction Homojunction

p- A10.30Ga0.70N p- A10.70Ga0.30N

• Investigated different Al compositional grades (p-anode)

• Drift region (optimized for low compensation):

Thickness: 5.4, 6.2 vtm (Total: 11-12 µm)

Doping (Si): 1-3 x 1016 cm-3

AIN AI07Gao 3N

Thickness (µrn) 4.5 11

FWHM-(0002) 210" 164"

FWHM- (10-12) 327" 239"

Tg (°C) < 1100°C 1060°C



A10.70Ga0.30N Diodes with P-type Polarization Doping

A

10

Distributed Polarization Doping with graded AIGaN
Temperature (K)

300 200 100

graded AIGaN p,

Al =0% 4 30%

o A

15

3 4 6 7 8

1000/T (K-1)

9 10

E

Eg

o O o o

Field-ionized 3D hole gas
Smooth valence band for enhanced vertical transport

Et

Energy-band Diagram Ev

Simon, Science 327, 60 (2010)

• 3D hole doping activated by polarization field

• Not limited by thermal activation!

• Doping with Mg is required

• Not yet demonstrated in AIGaN power diodes
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A10.7Ga0.3N "Quasi-Vertical" Polarization-doped PN diode

CI... /I% 0,11,

90 nm Grade
150 nm Grade
300 nm (30%)
300 nm (70%)

14 1

• Reverse voltage - -1800V (@ lwk)

• Ecrit =

Forward IV Characteristics

11E4

11E4

11E4

90
150

nm
nm

Grade
Grade --

300 nm (30%)
300 nm (70%)

.
1 I I 1

5 10 15)
witage

24

• Higher series resistance with longer
grade (lower Po)

< 3 MV/cm (lower than expected) • Low forward leakage

* Lower series resistance by adjusting Mg level and grade

* Increase breakdown by optimizing control of the electric field
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"Quasi-vertical" Mg-doped short-period superlattice PN diod

p-contact

•=1;T-S PS L
•

n-70%AIGaN
61.1m, 1-3e16cm-3

(drift) al

Mg short-period superlattice (114q-SPSL) PN diode

10A-AIN

8Å-A10.24Ga0.76N

n-contact

n-70%AIGaN (contact)

AIN

Sapphire

* Mg-SPSL is reproducible

Date

11/2012

Period (A)

/#19.2\N

Resistivity
(0.,-cm)

oL.)

/ /11.5\

2/2013 1 20.7 A 6.9

3/2014 21.7 10.4 PI

4/2017 1̀9.8 / 7.1
.111m. .111=

• P-type resistivity (in-plane): 7-10 Q-cm

• [Mg] - 3-4 e19 cm-3

• Thickness: 0.3 vtm (160 periods)

• Average Xal: 0.66

• Period by XRD: 22.1Å
1.E+06 -

1.E+05 -

1.E+04 -

1.E+03

1.E+02

1.E+01

1.E+00

(0002) X-ray Diffraction
n=0

Mg-SLSP PN Diode

n=-2

14

n=-1

16 18

AIN

20

=+1

Omega-2theta (degrees)

Sapphire

22 :1.159961 24
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"Quasi-vertical" Mg-doped short-period superlattice PN diod

Reverse IV Characteristics
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Voltage (V)

• Reverse voltage - -1200V (@ 1 nA)

• Ecrit 3.7 MV/cm (low for 70%-AIGaN)

• R01, - 14 mO-cm2

Voltage (V)
Vf = 30-35V

• High forward voltage - 30-35V

NI Lower forward voltage by adjusting heterobarrier in Mg-SPSL

NI Increase reverse voltage by optimizing JTE
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A10.7Ga0.3N "Quasi-Vertical" PN diode on sapphire

p-contact

p-30%AIGaN lm

n-70%AIGaN
(drift)

Ai_ n-contact

n-70%AIGaN (contact)

AIN

Sapphire

Heterojunction PN diodes (p-30% / n-70%)

• Utilize p-type doping of 30%-AIGaN

• Reverse voltage at 1 µA:

5.5µm * 1300V

8.0µm * 1850V

Reverse IV Characteristics (Drift: 5.5 ,um)
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[* Ecrit "' 2.3 MV/cm (very low)

Q: JTE, p-30%AIGaN or drift layer?

Forward lV Characteristics

Poor lateral current
spreading limits Ron

29



• Quasi-vertical AlxGal, N PIN diodes (X=0.3)

— Reverse voltages > 3000V (@ 1 vLA)

— Critical electric field (Emit) = 5.9 MV/cm2

• Quasi-vertical A10.3Ga0.7 N PIN diodes with regrown PN junction on etched
drift layer

— Reverse voltages to 1500 V (@ 1 vLA)

01 IV characteristics equal to continuously grown PN diodes 

• Growth of AlxGa1,N (X = 0.3) on patterned N-GaN substrates

— Threading dislocation density of 3-5 x 108 cm-2

— A10.3Ga0.7N overgrowth > 12 mm achieved for vertical PN diodes

— Vertical PIN - 30%AIGaN Vrevs = 680 V (@1 vLA)
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