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ENERGISE ProDROMOS Project

Programmable Distribution Resource Open Management Optimization System
(ProDROMOS)1

Create an Advanced Distribution Management System (ADMS) that:

• captures distribution circuit telemetry

• performs state estimation, and

• issues optimal DER setpoints based on PV production forecasts.

Implemented on a live power system using 684kW PV system

Compared three control strategies: autonomous, central optimization, distribu
optimization

Adopted by Connected Energy (ADMS vendor)

1prodromos is Greek for "forerunner" and the prodromoi were a light cavalry
army unit in ancient Greece used for scouting missions.
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IMPLEMENTATION

Opal-RT Communication Interfaces
PMU C37.118 to state estimator
Opal DataBus Interface receives P/Q
values for EPRI PV Simulators and
transmits bus voltages and frequency

Information Flow
• The State Estimator ingests PMU data to

produce current/voltage estimates for
the distribution system

• State estimation data and PV generation
forecasts populate an OpenDSS model.

• PSO wraps the OpenDSS model to
calculate the optimal PF setpoints for
each of the DER devices.
DER PF settings are issued through
proprietary SSH commands and IEEE
1815 (DNP3) commands

Connected Energy Software, Cloud Application
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Connected Energy Software, Cloud Application
Particle Swarm Optimization

DIGITALTWIN CONCEPT

Problem 
.

.

Not enough Intelligent Electronic Devices (IEDs, i.e., PMUs, DERs,
meters, etc.) to make state estimation observable for the field
demonstration

Short-term load forecasts or historical data is often used as "pseudo-
measurements" to get a solution, but the team doesn't have access to
this data

Proposal

• Use a real-time digital twin of the feeder to estimate the system
operations

• If general behavior of digital twin is similar to the physical feeder, the
"optimal" PF settings should support feeder voltages

• PV PF setpoints are sent to the physical and virtual PV system

Challenges

• This does not account for the current load (only pre-recorded versions)
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OPTIONS FOR VOLTAGE REGULATION USING GRID-SUPPORT FUNCTIONS

• Distributed Autonomous Control Volt-Var Mode
• Function: volt-var I'• Pros: Simple, requires little or no communications, DER locations not needed

• Cons: does not reach global optimum 
 - ,\ >V

Note: rather 'gentle' volt-var profile in this evaluation

• Extremum Seeking Control (ESC)

• Function: new grid-support function

• Pros: can achieve global optimum

• Cons: requires fitness function broadcast (with new inverter function), careful selection of
parameters

• Particle Swarm Optimization (PSO)

• Function: power factor or reactive power commands

• Pros: direct influence over DER equipment to achieve objective

• Cons: requires telemetry, knowledge of DER locations, and state estimator/feeder model

Note: Forecasting tool estimates PV power production

ESC

a cos oit COS mt.

Optimal Power Factor

V I



DISTRIBUTION CIRCUIT FEEDER MODEL

OpenDSS models were converted to reduced-order RT-Lab models

The PNM feeder has —440% PV penetration because of large utility-scale PV systems.

Lines
#

Transformers
#

Loads
#

Buses
#

Voltage
(V)

Load Power
PV Power
(kVA)Active

(kW)
Reactive
(kVAR)

12 2 14 15 7200/277 2568.63 1418.71 11258.00

The NG feeder has 50% penetration chiefly as distributed PV.

Lines
#

Transformers
#

Loads
#

Buses
#

Voltage
(V)

Load Power
PV Power
(kVA)Active

(kW)
Reactive
(kVAR)

13 3 43 15 8000 9494.76 318.10 5495.36

PNM Model
— Phase A

Phase B

— Phase C

Substation

• PV PCC

A Switching Capacitor

O Relay

• Recloser

NG Model



COMPARISON OF VOLTAGE REGULATION APPROACHES
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IMPACT OF EACH VOLTAGE REGULATION TECHNIQUE (E1

A scoring approach is used to measure the effectiveness of each voltage regulation technique:

1 tend N

score = T 1(1vbl Vnoml 1 Vreg Vnoml) dt

where,

t=o b=1

vbl : Baseline Voltage

vnoyn : Target Voltage

vreg : Voltage with control applied

T: Time Period

b: bus

t: time

West Feeder Score

Phase A Phase B Phase C Average Improvement (%)

W 0.024 0.024 0.024 0.071 12.9%

ESC 0.140 0.140 0.132 0.412 74.5%

PSO 0.139 0.139 0.130 0.408 73.7%

Best Score 0.186 0.188 0.179 0.553

East Feeder Score Controlling a Single PV

P

W 0.000 0.000 0.000 -0.001 0.0%

ESC 0.012 0.000 0.031 0.043 3.2%

PSO -0.001 0.000 0.004 0.002 0.2%

Best Score 0.194 0.635 0.507 1.336

East Feeder Score Controlling All PV

P e B Phase C Average Improvement (%)

W -0.004 0.122 0.085 0.203 15.2%

ESC -0.023 0.328 0.202 0.508 38.0%

PSO -0.023 0.124 0.137 0.238 17.8%

Best Score 0.194 0.635 0.507 1.336

PNM Model

NG Model



CONCLUSION

• Incremental development approach was effective (simulation to real time to PHIL to field)

• Communications between measurement equipment, ADMS controllers, and DER devices can be verified.

• Build confidence in controls before field deployment.

• Digital twin was necessary during development to overcome sparse measurements for state estimation

• Observations about control options

• Volt-var functionality provides some DER voltage regulation without communications.

• In low communication environments, extremum seeking control is a viable means to control a fleet of DER

devices to track toward optimal PF setpoints, but it is relatively slow and the system must be tolerant of

probing signal ripple.

• State estimation-fed, model-based DER optimization is a viable control strategy with sufficient telemetry.

• Open question, and observations:

• How well could negative-sequence inverters regulate voltage on unbalanced feeders?

• Available telemetry and communications will rarely supply what is assumed during ADMS development

• Software interoperability continues to be challenging
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ESC

Extremum Seeking Control will be used as a
comparison to the PF optimization technique

Substation

-8-AM-11P-•-•

Steps in ESC:

A. Centralized control center
collects data from the power system

B. Control center calculates the objective
function, e.g., J = 1/n*E[(Vi — Vn)/Vid2

C. Control center broadcasts objective function to all inverters.

D. Individual inverters extract their frequency-specific effect
on the objective function and adjust output to trend toward
the global optimum.

Utility Control Center g ,
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PF OPTIMIZATION
• Optimization occurs every minute over a 15-min horizon

• OpenDSS simulation is instantiated with PV production forecast and current
feeder status (which is assumed to persist)

• State-estimation determines current feeder loads

• Forecasting tool estimates PV power production

• Particle Swarm Optimization (PSO) is used to determine the optimal PF settings
for the DER devices because of nonconvex fitness landscape

Objective Function:

min Wo 6 violation (V) w16 (V —V base) + w 2C (PF)PF

violation (V) = 1 if any 111 >

o-(V — Vbase ) is standard deviation of V — Vbase

C(PF)=I1-1PF1

Cost minimized when voltage = 17,,.ase and PF=1

Connected Energy Software, Cloud Application
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Connected Energy Software, Cloud Application
Particle Swarm Optimization

DIGITALTWIN CONCEPT

Problem 
.

.

Not enough Intelligent Electronic Devices (IEDs, i.e., PMUs, DERs,
meters, etc.) to make state estimation observable for the field
demonstration

Short-term load forecasts or historical data is often used as "pseudo-
measurements" to get a solution, but the team doesn't have access to
this data

Proposal

• Use a real-time digital twin of the feeder to estimate the system
operations

• If general behavior of digital twin is similar to the physical feeder, the
"optimal" PF settings should support feeder voltages

• PV PF setpoints are sent to the physical and virtual PV system

Challenges

• This does not account for the current load (only pre-recorded versions)

WinIGS State Estimator
State

Estimation
Solution
(C37.118) Calculate P and

O for Loads for
OpenDSS

Initial set of
DER reactive

power
settings

l7petanrst:

Update DER
power factors
using PSO

Run Open DSS
-P over time

horizon

Calculate
objective
function

Optimal DER
reactive power

set ings

WinIGS Section
1 PDC Data
Capture

PMU IEDs
(metered locations)

WnIGS Section
2 PDC Data
Capture

PMU IEDs
(metered locations)

WnIGS Section
3 PDC Data
Capture

PMU IEDs
(metered locations)

IEEE C37.118

PV Production

Forecasts

PV Productlon

Database

Connected Energy

DER Communication

Module

UDP over Public Internet

Distributed Energy Technologies Laboratory (DETL)
Albuquerque, NM

SEL 3373
Phasor Data Concentrato

Legend

IEEE C37 118 Data Streams

PMUs on
Each Bus

Opal-RT Real-Time
Distribution Simulation

(Digital Twin)

3 currents
3 voltages

Velecell ":0-82:178

802177, ere.

The same PP
setpoints are
issued to the
strnulated and
physical PV
systems.

DBus
658 w

EPRI PV
Simulator

DNP3

SEL 734
Feeder
Power
Meter

Voltage, current, power, and PF
measurements on each phase

DNP3

PV Site
utility
Meter

21 kW PV

tree. 1

•
•
•

24FWFN

Inverter 28

Old Upton Rd 750 kW PV Site

41
1:odbus
TCP

Cluster
Controller

  Tr1e-rr:C e'sD;ST:I'Ve:r
* (Sae Congoger ang

Molitor)

DNP3

Tnrnark
Associates
DNP3 API


