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ENERGISE ProDROMOS Project

Programmable Distribution Resource Open Management Optimization System
(ProDROMOS)!

Create an Advanced Distribution Management System (ADMS) that:
= captures distribution circuit telemetry

= performs state estimation, and

= jssues optimal DER setpoints based on PV production forecasts. Power Hardware-in-the-
Loop Voltage Regulation

Power Simulations

Implemented on a live power system using 684kW PV system

Compared three control strategies: autonomous, central optimization, distributgg Field Demonstrations on
optimization Live Power Systems

Adopted by Connected Energy (ADMS vendor)

Prodromos is Greek for "forerunner" and the prodromoi were a light cavalry
army unit in ancient Greece used for scouting missions. %!
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DIGITALTWIN CONCEPT

Problem

. Not enough Intelligent Electronic Devices (IEDs, i.e., PMUs, DERs,
meters, etc.) to make state estimation observable for the field
demonstration

. Short-term load forecasts or historical data is often used as “pseudo-
measurements” to get a solution, but the team doesn’t have access to
this data

Proposal

. Use a real-time digital twin of the feeder to estimate the system
operations
. If general behavior of digital twin is similar to the physical feeder, the
“optimal” PF settings should support feeder voltages
. PV PF setpoints are sent to the physical and virtual PV system

Challenges
. This does not account for the current load (only pre-recorded versions)
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OPTIONS FOR VOLTAGE REGULATION USING GRID-SUPPORT FUNCTIONS

= Distributed Autonomous Control Volt-Var Mode

\>V

= Function: volt-var \ TQ

=  Pros: Simple, requires little or no communications, DER locations not needed

= Cons: does not reach global optimum l
Note: rather ‘gentle’ volt-var profile in this evaluation

= Extremum Seeking Control (ESC) Eak
= Function: new grid-support function Objective 15
=  Pros: can achieve global optimum "
= Cons: requires fitness function broadcast (with new inverter function), careful selection of AN w1 s
parameters Y s s+l (%‘ st+h
acos wt cos wt

= Particle Swarm Optimization (PSO)
=  Function: power factor or reactive power commands ]
=  Pros: direct influence over DER equipment to achieve objective Optimal Power Factor
= Cons: requires telemetry, knowledge of DER locations, and state estimator/feeder model m (ly

7 7
Note: Forecasting tool estimates PV power production V| M




| Sundie
DISTRIBUTION CIRCUIT FEEDER MODEL =.

OpenDSS models were converted to reduced-order RT-Lab models PNM M

=y 3
| —— Phase B -

— Phase C
; Substation

odel

PV PCC
A switching Capacitor
O Relay

The PNM feeder has ~440% PV penetration because of large utility-scale PV systems. | 0 reconr
Load Power
Lines | Transformers Loads Buses Voltage PV Power
# # # # (V) Active Reactive (kVA)
(kW) (kVAR)
12 2 14 15 7200/277 2568.63 1418.71 11258.00

The NG feeder has 50% penetration chiefly as distributed PV.

13 3 43 15 8000 9494.76 318.10 5495.36




COMPARISON OF VOLTAGE REGULATION APPROACHES

Comparison of Min, Max, and Average Voltages
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= % Sanila
IMPACT OF EACH VOLTAGE REGULATION TECHNIQUE =

A scoring approach is used to measure the effectiveness of each voltage regulation technique:

PNM Model
btenag N West Feeder Score % :
1 Phase A |Phase B |Phase C|Average| Improvement (%)

score = T Z (|77bl — Unom| — |Vreg - VnomD dt w 0.024) 0.024] 0.024/ 0.071 12.9%

t=0 b=1 ESC 0.140 0.140 0.132] 0.412 74.5%

PSO 0.139] 0.139] 0.130 0.408 73.7%

Best Score 0.186] 0.188 0.179 0.553
where,

v,;- Baseline Voltage
V.om- larget Voltage

V.o - Voltage with control applied

N Model

T:  Time Period
b:  bus

t: time




CONCLUSION

= Incremental development approach was effective (simulation to real time to PHIL to field)
= Communications between measurement equipment, ADMS controllers, and DER devices can be verified.
= Build confidence in controls before field deployment.

= Digital twin was necessary during development to overcome sparse measurements for state estimation

* Observations about control options

* Volt-var functionality provides some DER voltage regulation without communications.

* In low communication environments, extremum seeking control is a viable means to control a fleet of DER
devices to track toward optimal PF setpoints, but it is relatively slow and the system must be tolerant of
probing signal ripple.

e State estimation-fed, model-based DER optimization is a viable control strategy with sufficient telemetry.

= Open question, and observations:
= How well could negative-sequence inverters regulate voltage on unbalanced feeders?

= Available telemetry and communications will rarely supply what is assumed during ADMS development
= Software interoperability continues to be challenging
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Utility Control Center B C

ESC

Extremum Seeking Control will be used as a
comparison to the PF optimization technique

Steps in ESC: : I e ’\/\/\/\/\/‘

A. Centralized control center

Bus 22

collects data from the power system Bus 33
B.  Control center calculates the objective “v‘vW*"T—t‘JVWJ‘m'l
function, e.g., J = 1/nxZ[(V; — V) /V,]? 5 I I - Tl L /\/
C. Control center broadcasts objective function to all inverters. L o+ + M
D. Individual inverters extract their frequency-specific effect T W i
on the objecti\_/e function and adjust output to trend toward | ’t *1
the global optimum. -
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PF OPTIMIZATION

Objective Function:
. Optimization occurs every minute over a 15-min horizon minw,d,,, (V) N wlo-(V v ) N WZC(PF)
. OpenDSS simulation is instantiated with PV production forecast and current - _
feeder status (which is assumed to persist) 8 oraion (V) =1if any V| >V,
. State-estimation determines current feeder loads O'(V Ve ) is standard deviation of V' -V,
. Forecasting tool estimates PV power production
. S . . . . C(PF)=) 1-|PF]|
. Particle Swarm Optimization (PSO) is used to determine the optimal PF settings
for the DER devices because of nonconvex fitness landscape Cost minimized when voltage = V., and PF=1
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DIGITALTWIN CONCEPT

Problem

. Not enough Intelligent Electronic Devices (IEDs, i.e., PMUs, DERs,
meters, etc.) to make state estimation observable for the field
demonstration

. Short-term load forecasts or historical data is often used as “pseudo-
measurements” to get a solution, but the team doesn’t have access to
this data

Proposal

. Use a real-time digital twin of the feeder to estimate the system
operations
. If general behavior of digital twin is similar to the physical feeder, the
“optimal” PF settings should support feeder voltages
. PV PF setpoints are sent to the physical and virtual PV system

Challenges
. This does not account for the current load (only pre-recorded versions)
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