SAND2019- 5113PE

Jeremiah Wilke
Scalable Modeling and Analysis, Sandia National Labs, Livermore CA
Kokkos User’s Group Meeting

. DERRTEINT OF
m ‘ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned T
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Harvard Business Review: Behavioral Economists D
#1 Reasons People Make Bad Decisions

= Not anticipating unexpected events
= Trilinos is great. Everyone wants to use it — but often single packages as a TPL

= Indecisiveness
= The DOE — even with ECP — has not required uniformity in best practices
= Remaining locked in the past
= We have modern CMake now
= Having no strategic alignment
= Strategy is make the code as easy to use and develop as possible
= QOver-dependence (and cyclic dependence)
= Jsolation: Components separated so long they can’t be brought together

= Lack of technical depth
= |s modern CMake widely understood?

Modern CMake wants a clean separation of DE:
‘building” and ‘using’ libraries

= All options should be applied specifically to TARGETS (libs, exes)
= No more directly modifying CXXFLAGS
= No more global setting include directories and compiler flags

= Allinclude directories and compiler flags should be clearly defined as:

= PUBLIC: Flag needed to build Kokkos and needed downstream to use Kokkos
Kokkos headers
Flags like =fopenmp or CUDA flags needed for the backend

= PRIVATE: Flag only needed to build Kokkos (not needed to use)
Certain warning flags
Optimization flags
C++ standard flags???

= |NTERFACE: Header-only libraries
lgnore for now

Modern CMake wants a clean separation of DE:
‘building” and ‘using’ libraries

All options should be applied specifically to TARGETS (libs, exes)

Compiler features are not activated with explicit flags

= e.g. TARGET _COMPILE_FEATURES(target, std_cxx_14)
All TPLS are CMake targets — even if imported from autotools
Should work for transitive dependencies

= Kokkos -> KokkosKernels -> MyMathLib

= MyMathLib should get Kokkos flags without Kokkos Kernels doing any work

= MyMathLib should get Kokkos flags without knowing Kokkos exists
A few things missing in CMake

= CUDA/CUDACXX needs a feature list just like C++

= Needs intermediate C++ standards as a feature

= TARGET_COMPILE_FEATURES needs to detect ABI problems

Thought experiment: Should C++ standard flags be PUBLIC? PRIVATE?
Something new like ABI_PRIVATE?

Complexity Measured in Lines of Code ()

Kokkos supports 6 different ways of building and installing (or not installing)
= Trilinos (Tribits)

= Standalone — separate libs or single lib

= |n-tree build — separate libs or single lib
= Raw Makefile

No More Trilinos! And No Makefile! And Install
TPL Only! Must use Cmake! Single Lib Only
Tribits 500 LOC
Wrappers
Trilinos 600 LOC
Cmake Options
Makefile-CMake 500 LOC 500
Handoff
Makefile.kokkos 1200 LOC 1200
Find TPLs CMake 400 LOC 400 400 400
Actual core CMake 1200 LOC 1200 1200 1000

Total 4400 LOC 3300 LOC 1600 LOC 1400 LOC

What should your CMake file look like D
for using Kokkos?

FIND_PACKAGE(Kokkos REQUIRED) | need Kokkos to build — and
ADD_LIBRARY(target ${SOURCES}) anyone using my APl needs
TARGET_LINK_LIBRARIES(target PUBLIC Kokkos::kokkos) Kokkos

FIND_PACKAGE(Kokkos REQUIRED)
| need Kokkos to build — but

ADD_LIBRARY (target ${SOURCES}) : .
using my APl does not require
TARGET_LINK_LIBRARIES(target PRIVATE Kokkos::kokkos) Kokkos

FIND_PACKAGE(Kokkos REQUIRED)
ADD_LIBRARY(target ${SOURCES})
TARGET_LINK_KOKKOS(target)

The likely near-term solution
to minimize complexity...

TARGET _LINK_KOKKOS could in the future take arbitrary assertions

Make easy problems slightly less easy if it makes (@&,

really hard problems tractable

= What are the hard problems for software stacks with dozens of dependent
packages?
= Developing against release versions of packages: EASY
= Developing against feature branches of packages: HARD
= \Versioning

= | export a version number and compatibility model

= | depend on packages with a particular version (=, >=, <=)

V>=2.1; Feature 1

= Develop features depend on develop branches or commits

>=2.2; Feature 3 4

= Concretization:

= Agreeing on a dependence (i.e. Kokkos) (or=auk; Peatume 2
that satisfies all dependent packages
= Package C concretizes to @2.2 with Features 2,3,4
= Patching
= | want new features, but the new version breaks my code

= | want new features, but need to cherry-pick commits

Spack: Package Management for HPC) =

= Packages define a ‘package.py’ that says:
= What packages will | use?
= How do | build?
= These will depend on variants (features)
= Example: Ifpack2 if it were a standalone library
= spack install ifpack2@develop +openmp %gcc@7.2.0

variants:
build_type [RelwithDebiInfo] Debug, Release, CMake build type
RelwithDebInfo,
MinSizeRel
complex_double [off] True, False ETI complex double
cuda [off] True, False enable cuda backend
double [on] True, False ETI doubles
float [off] True, False ETI float
openmp [off] True, False enable OpenMP backend
serial [on] True, False enable Serial backend
Installation Phases:
cmake build install

Build Dependencies:
cmake kokkos-kernels

Spack Ifpack2 Example Detail

= Spack concretizes a dependency graph
= Dependency hash is unique ID for version/variants/compiler

| s/t 5uh74e

= Spack builds packages in dependency order

= At each step, CMake used to build and install
= What flags do | need to build?
= What flags do dependencies need to use me?
= | can fine-tune dependencies by:
= Creating "versions” of a project by cherry-picking feature commits
= Patching dependencies

= Dependencies can be “resources” for in-tree builds

Using nvcc_wrapper with Spack

= |nstall nvcc_wrapper for your underlying compiler
= spack install nvcc_wrapper %gcc@7.2.0-kokkos

= Add nvcc_wrapper to the Spack compilers.yaml with meaningful name
= Suggested style is calling it gcc@7.2.0-kokkos

= Proceed with workflow with as before
= spack install ifpack@develop +cuda %gcc@7.2.0-kokkos

| s/t 5uh74e

“Alpha” version of new Cmake and Spack available today for the brave

Hope On The Horizon For Building Kokkos as TPL D
with CMake and Spack?

“The struggle itself towards the heights is enough to fill a man's
heart. One must imagine Sisyphus happy.”

-Albert Camus, The Myth of Sisyphus

-‘%Trilinos and {h
= Makefiles

We still have to support all 6 modes for now... DE:
How do we do it?

No calls to raw Tribits functions, single set of CMake files
= Wrapper functions used that support standalone or Tribits
= Too many IF(...) statements
= Too many test configurations
= Fragile is good when broken things look broken
= Fragile is bad (i.e. parallel CMake’s) if silent errors

= Don’t trust Tribits to propagate flags (transitive dependencies)
when installed

= Clang-CUDA doesn’t work today

= Makefile.kokkos logic only used for config header
= All the bad things with CXXFLAGS will only affect Makefile users

Ultimate goal is maximize Kokkos usability: D
is this possible supporting 6 build methods?

“A man devoid of hope and conscious of being so has ceased to
belong to the future.”

-Albert Camus, The Myth of Sisyphus

‘I have achieved the summit only to watch the ball roll down the other
side, with all the work still remaining before me.”

-Jeremiah Wilke

Harvard Business Review: Behavioral Economists D
#1 Reasons People Make Bad Decisions

= Not anticipating unexpected events
= Small, agile projects can more rapidly adapt to customers
= Indecisiveness
= |f a little pain now makes long-term future better, we need to act

= | would rather spend my time forcing, ahem, teaching people to use CMake than
maintain 6 different build methods

= Remaining locked in the past

= Keep Makefiles for 2.X. Should a version 3.0 shed the baggage?

= The only acceptable context going forward for Makefiles is mini-apps!
= Having no strategic alignment

= Strategy is make the code as easy to use as possible. 6 different build methods all
with their own documentation isn’t good for developers, users, or collaboration

= Jsolation:

= Hard to bring tools from Kokkos ecosystem together if different build worlds
= Lack of technical depth

= SIMD types/layouts/executors are hard. CMake is not (when it works)

Acknowledgments (h

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA-0003525.

(7
INEL

=4
National Nuclear Security Administration
Sandia
National

B

Laboratories

