
Build Systems and Package Management for Modern C++

Jeremiah Wilke
Scalable Modeling and Analysis, Sandia National Labs, Livermore CA

Kokkos User's Group Meeting

ari gin& IMO Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2019-5113PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



Harvard Business Review: Behavioral Economists

#1 Reasons People Make Bad Decisions

■ Not anticipating unexpected events

■ Trilinos is great. Everyone wants to use it — but often single packages as a TPL

■ Indecisiveness

■ The DOE — even with ECP — has not required uniformity in best practices

■ Remaining locked in the past

■ We have modern CMake now

■ Having no strategic alignment

■ Strategy is make the code as easy to use and develop as possible

■ Over-dependence (and cyclic dependence)

■ isolation: Components separated so long they can't be brought together

■ Lack of technical depth

■ Is modern CMake widely understood?



Modern CMake wants a clean separation of
'building' and 'using' libraries

■ All options should be applied specifically to TARGETS (libs, exes)

■ No more directly modifying CXXFLAGS

■ No more global setting include directories and compiler flags

■ All include directories and compiler flags should be clearly defined as:

■ PUBLIC: Flag needed to build Kokkos and needed downstream to use Kokkos

Kokkos headers

Flags like —fopenmp or CUDA flags needed for the backend

■ PRIVATE: Flag only needed to build Kokkos (not needed to use)

Certain warning flags

Optimization flags

C++ standard flags???

■ INTERFACE: Header-only libraries

Ignore for now



Modern CMake wants a clean separation of
'building' and 'using' libraries

■ All options should be applied specifically to TARGETS (libs, exes)

■ Compiler features are not activated with explicit flags

■ e.g. TARGET_COMPILE_FEATURES(target, std_cxx_14)

■ All TPLS are CMake targets — even if imported from autotools

■ Should work for transitive dependencies

■ Kokkos -> KokkosKernels -> MyMathLib

■ MyMathLib should get Kokkos flags without Kokkos Kernels doing any work

■ MyMathLib should get Kokkos flags without knowing Kokkos exists

■ A few things missing in CMake

■ CUDA/CUDACXX needs a feature list just like C++

■ Needs intermediate C++ standards as a feature

■ TARGET COMPILE FEATURES needs to detect ABI problems

■ Thought experiment: Should C++ standard flags be PUBLIC? PRIVATE?

Something new like ABI_PRIVATE?



Complexity Measured in Lines of Code
Sande
Nolicinal
laboratories

• Kokkos supports 6 different ways of building and installing (or not installing)

• Trilinos (Tribits)

• Standalone — separate libs or single lib

• ln-tree build — separate libs or single lib

• Raw Makefile

Today
No More Trilinos!

TPL Only!

And No Makefile!

Must use Cmake!

And Install

Single Lib Only

Tribits

Wrappers

500 LOC

Trilinos

Cmake Options

600 LOC

Makefile-CMake 500 LOC

Handoff
500

Makefile.kokkos 1200 LOC 1200

Find TPLs CMake 400 LOC 400 400 400

Actual core CMake 1200 LOC 1200 1200 1000

Total 4400 LOC 3300 LOC 1600 LOC 1400 LOC



What should your CMake file look like
for using Kokkos?

FIND_PACKAGE(Kokkos REQUIRED)

ADD_LIBRARY(target S{SOURCES})

TARGET_LINK_LIBRARIES(target PUBLIC Kokkos::kokkos)

FIND_PACKAGE(Kokkos REQUIRED)

ADD_LIBRARY(target S{SOURCES})

TARGET_LINK_LIBRARIES(target PRIVATE Kokkos::kokkos)

FIND_PACKAGE(Kokkos REQUIRED)

ADD_LIBRARY(target S{SOURCES})

TARG ET_L I N K_KO KKOS(target)

I need Kokkos to build — and
anyone using my API needs
Kokkos

I need Kokkos to build — but
using my API does not require
Kokkos

The likely near-term solution
to minimize complexity...

TARGET LINK KOKKOS could in the future take arbitrary assertions



Make easy problems slightly less easy if it makes
really hard problems tractable

• What are the hard problems for software stacks with dozens of dependent
packages?

• Developing against release versions of packages: EASY

• Developing against feature branches of packages: HARD

• Versioning

• l export a version number and compatibility model

• l depend on packages with a particular version (=, >=, <=)

• Develop features depend on develop branches or commits

• Concretization:

• Agreeing on a dependence (i.e. Kokkos)

that satisfies all dependent packages

• Package C concretizes to @2.2 with Features 2,3,4

• Patching

• l want new features, but the new version breaks my code

• l want new features, but need to cherry-pick commits

A @ V2.0

V>=2.1; Feature 1

V>=2.1: Feature 2

V>=2.2; Feature 3 4



Spack: Package Management for HPC

• Packages define a ̀ package.pyi that says:

• What packages will l use?

• How do l build?

• These will depend on variants (features)

• Example: lfpack2 if it were a standalone library

• spack install ifpack2@develop +openmp %gcc@7.2.0 

variants:
build_type [RelwithDebInfo]

complex_double [off]
cuda [off]
double [on]
float [off]
openmp [off]
serial [on]

Installation Phases:
cmake build install

Build Dependencies:
cmake kokkos-kernels

Debug, Release,
RelwithDebinfo,
minsizeRel
True, False
True, False
True, False
True, False
True, False
True, False

CMake build type

ETI complex double
enable Cuda backend
ETI doubles
ETI float
enable openMP backend
enable Serial backend



Spack Ifpack2 Example Detail
■ Spack concretizes a dependency graph

■ Dependency hash is unique ID for version/variants/compiler

■ Spack builds packages in dependency order

■ At each step, CMake used to build and install

■ What flags do I need to build?

■ What flags do dependencies need to use me?

■ I can fine-tune dependencies by:

■ Creating "versions" of a project by cherry-picking feature commits

■ Patching dependencies

■ Dependencies can be "resources" for in-tree builds



Using nvcc_wrapper with Spack

• Install nvcc_wrapper for your underlying compiler

• spack install nvcc_wrapper %gcc@7.2.0-kokkos

• Add nvcc wrapper to the Spack compilers.yaml with meaningful name

• Suggested style is calling it gcc@7.2.0-kokkos 

• Proceed with workflow with as before

• spack install ifpack@develop +cuda %gcc@7.2.0-kokkos

"Alpha" version of new Cmake and Spack available today for the brave



Hope On The Horizon For Building Kokkos as TPL

with CMake and Spack?

"The struggle itself towards the heights is enough to fill a man's
heart. One must imagine Sisyphus happy."

-Albert Camus, The Myth of Sisyphus



We still have to support all 6 modes for now...
How do we do it?

■ No calls to raw Tribits functions, single set of CMake files

■ Wrapper functions used that support standalone or Tribits

■ Too many IF(...) statements

■ Too many test configurations

■ Fragile is good when broken things look broken

■ Fragile is bad (i.e. parallel CMake's) if silent errors

■ Don't trust Tribits to propagate flags (transitive dependencies)
when installed

■ Clang-CUDA doesn't work today

■ Makefile.kokkos logic only used for config header

■ All the bad things with CXXFLAGS will only affect Makefile users



Ultimate goal is maximize Kokkos usability:
is this possible supporting 6 build methods?

"A man devoid of hope and conscious of being so has ceased to
belong to the future."

-Albert Camus, The Myth of Sisyphus

"l have achieved the summit only to watch the ball roll down the other
side, with all the work still remaining before me."

-Jeremiah Wilke



Harvard Business Review: Behavioral Economists

#1 Reasons People Make Bad Decisions
■ Not anticipating unexpected events

■ Small, agile projects can more rapidly adapt to customers

■ Indecisiveness

■ If a little pain now makes long-term future better, we need to act

■ I would rather spend my time forcing, ahem, teaching people to use CMake than
maintain 6 different build methods

■ Remaining locked in the past

■ Keep Makefiles for 2.X. Should a version 3.0 shed the baggage?

■ The only acceptable context going forward for Makefiles is mini-apps!

■ Having no strategic alignment

■ Strategy is make the code as easy to use as possible. 6 different build methods all
with their own documentation isn't good for developers, users, or collaboration

■ isolation:

■ Hard to bring tools from Kokkos ecosystem together if different build worlds

■ Lack of technical depth

■ SIMD types/layouts/executors are hard. CMake is not (when it works)



Acknowledgments
Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA-0003525.

41k vAliao,

National Nuclear Security A dministration

Sandia
National
Laboratories


